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I. A LITTLE BACKGROUND
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RUNGE-KUTTA (RK) METHODS 1895, 1901

• Specified by s (number of stages) and s2 +2s real numbers aij,
i, j = 1, . . . , s, bi, ci, i = 1, . . . , s.

• Integrates D-dimensional system (d/dt)y = F (y, t) by time-
stepping n→ n+1, n = 0, . . . , N−1, (hn = tn+1−tn is steplength)

yn+1 = yn + hn
s∑

i=1

biKn,i,

where Kn,i = F (Yn,i, tn + cihn) are the ‘slopes’ at the so-called
internal stages Yn,i. These are defined by

Yn,i = yn + hn
s∑

j=1

aijKn,j, i = 1, . . . , s.

(Recursion/algebraic system.)
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QUADRATIC INVARIANTS (eg angular momentum)

• Some RK exactly conserve quadratic invariants:

Theorem 1. (Cooper 1987) If the system possesses a quadratic

first integral I [ie I(·, ·) is a bilinear map RD×RD → R and along

each solution (d/dt)I(y(t), y(t)) ≡ 0] and

biaij + bjaji − bibj = 0, i, j = 1, . . . , s,

then for each RK trajectory {yn}, I(yn, yn) is independent of n.

(The condition linking the aij, bi is essentially necessary for con-

clusion to hold.)

(The proof is a simple algebraic manipulation.)
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HAMILTONIAN PROBLEMS

• Appear very frequently. They are characterized by the fact that

their solution flow preserves the (canonical) symplectic structure

of the phase space.

• A numerical integrator is said to be symplectic if when ap-

plied to Hamiltonian systems the map yn 7→ yn+1 preserves the

symplectic structure of the phase space.

• Symplectic integrators to be preferred in many applications.

Extensive theory developed in last 20 years.
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SYMPLECTIC RK METHODS

Theorem 2. (Lasagni, Suris, SS 1988) If

biaij + bjaji − bibj = 0, i, j = 1, . . . , s,

then the RK method is symplectic.

(The condition linking the aij, bi is essentially necessary for con-

clusion to hold. Methods that satisfy such a condition are called

symplectic RK methods.)

(The proof is a simple algebraic manipulation.)
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PARTITIONED RUNGE-KUTTA (PRK) METHODS

• Some systems come to us partitioned (eg positions/velocities)

(d/dt)q = f(q, p, t), (d/dt)p = g(q, p, t).

• Makes sense to use two sets of RK coefficients aij, i, j =

1, . . . , s, bi, ci,i = 1, . . . , s AND Aij, i, j = 1, . . . , s, Bi, Ci,i =

1, . . . , s. Result is a Partitioned Runge-Kutta scheme (PRK).

• The Verlet/Stormer/leapfrog method (method of choice in

molecular dynamics) gives an example of PRK method.
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PARTITIONED RUNGE-KUTTA (PRK) METHODS

(continued)

• Equations are now:

qn+1 = qn + hn
s∑

i=1

bikn,i, pn+1 = pn + hn
s∑

i=1

Bi`n,i,

with slopes

kn,i = f(Qn,i, Pn,i, tn + cihn), `n,i = g(Qn,i, Pn,i, tn + Cihn),

and stages

Qn,i = qn + hn
s∑

i=1

aijkn,j, Pn,i = pn + hn
s∑

j=1

Aij`n,j.
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CONSERVATION PROPERTIES OF PRK METHODS

• Both theorems above easily adapted:

Theorem 3. S(·, ·) is a real-valued bilinear map such that along
solutions

(d/dt)S(q(t), p(t)) ≡ 0.

The relations

bi = Bi, i = 1, . . . , s, biAij +Bjaji − biBj = 0, i, j = 1, . . . , s,

and

ci = Ci, i = 1, . . . , s,

guarantee that, for each PRK trajectory S(qn, pn) is indepen-
dent of n. The same relations ensure that the PRK method is
symplectic (Abia & SS 1989, 1993, Suris 1990).
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II. VARIATIONAL EQUATIONS/ADJOINTS/

SENSITIVITIES
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VARIATIONAL SYSTEM

• d-dimensional system (d/dt) = f(x, t), initial cndtn. x(t0) = α.

• Let x̄(t) be solution with x̄(t0) = α + η, η ‘small’. Wish to
estimate x̄(t0 + T )− x(t0 + T ).

• Note:

(d/dt)(x̄(t)−x(t)) = f(x̄(t), t)−f(x(t), t) ≈ ∂xf(x(t), t)(x̄(t)−x(t)).

• As |η| → 0,

x̄(t) = x(t) + δ(t) + o(|η|),

where δ solves the variational equations:

d

dt
δ = ∂xf(x(t), t) δ.
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THE ADJOINT SYSTEM

• The adjoint system

d

dt
λ = −∂xf(x(t), t)T λ

is set up so as to get

λ(t0 + T )Tδ(t0 + T ) = λ(t0)Tδ(t0).

(Note

d

dt
λ(t)Tδ(t) =

(
d

dt
λ(t)

)T
δ(t) + λ(t)T

(
d

dt
δ(t)

)
≡ 0.)
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USING THE ADJOINT SYSTEM

• Assume we wish to compute ωTδ(t0 + T ). Solve adjoint with

final condition λ(t0 + T ) = ω to find λ(t0) and then

ωTδ(t0 + T ) = λ(t0 + T )Tδ(t0 + T ) = λ(t0)Tδ(t0) = λ(t0)Tη.

• If η varies only one integration of adjoint! (Variational equat-

ions require a fresh integration for each new initial condition.)

• Eg ∇αC(x(t0+T )) (real-valued C). Use ω = ∇xC(x(t0+T )) and

η the unit vectors to conclude ∇αC(x(t0 + T )) = λ(t0). Adjoint

pulls back gradients.

• Variational eqns propagate perturbations forward, adjoint eqn

work backward.
13



FINDING THE SENSITIVITY OF THE RK SOLUTION

When x(t0 + T ) is found approximately by RK method, do we

find the variation of the computed xN ≈ x(t0 + T )?

* By numerically integrating the variational equation?

** By taking variations in the (discrete) RK equations?
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FINDING THE SENSITIVITY OF THE RK SOLUTION

(continued)

• Both approaches lead to the same thing.

• For Euler’s rule (1768):

xn+1 = xn + hnf(xn, tn).

If we vary the discrete equations, we get:

δn+1 = δn + hn∂xf(xn, tn) · δn.

. . . and these two formulae coincide with Euler’s rule as applied

to the 2d-dimensional system (original+variational) satisfied by

(x, δ).
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SENSITIVITY OF THE RK SOLUTION: ADJOINTS

• Recall usefulness of adjoint system hinges on

ωTδ(t0 + T ) = λ(t0 + T )Tδ(t0 + T )=λ(t0)Tδ(t0) = λ(t0)Tη.

To compute the discrete sensitivity ωTδN in terms of the dual
variable λ, we likewise need λN such that λTNδN=λT0δ0.

• This target will be achieved if 3d-system for x, δ, λ is integrated
by symplectic RK scheme, because this will exactly preserve the
quadratic invariant λ(t)Tδ(t) of the differential system.

• If integrator is not symplectic, integrating the adjoint equation
results in λN such that λTNδN = λT0δ0+O(hν) (ν order of method).

• Of course equations for δ are left out when finding λN .
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THE PRK CASE

• λTNδN = λT0δ0 also guaranteed if symplectic PRK is used (use
lower case coefficients for x, δ and upper case coefficients for λ.

• If x system is integrated by nonsymplectic RK method with
nonzero bi’s, define clever upper case coefficients

Aji = bi − biaij/bj, i, j = 1, . . . , s, Bi = bi, Ci = ci, i = 1, . . . , s,

and use them to integrate adjoint system. Overall integrator is
symplectic and thus λTNδN = λT0δ0.

• Eg, for nonsymplectic Euler’s rule, the clever formula is

λn+1 = λn − hn∂xf(xn, tn)Tλn+1.

(xn found first from x0 = α by stepping n→ n+ 1. Then get λn
from λN = ω by stepping n← n+ 1. Whole business is explicit.)
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AN OBVIOUS QUESTION

• As we have just seen, we may compute exactly ∇αC(xN) by a

clever integration of the adjoint system.

• Can’t we find that gradient directly (ie by differentiation of the

RK formulae that we used to find xN starting from α)?

• Before we do that we need to take a small detour. . .
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III. LAGRANGE MULTIPLIERS/

AUTOMATIC DIFFERENTIATION
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GRADIENTS VIA LAGRANGE MULTIPLIERS: ODEs

New derivation of ∇αC(x(t0 + T )) = λ(t0):

• Set Lagrangian L with multipliers λ̂0, λ̂ (for solns L = C):

C(x̂(t0 + T ))− λ̂T0
(
x̂(t0)− α̂

)
−
∫ t0+T

t0
λ̂(t)T

(
d

dt
x̂(t)− f(x̂(t), t)

)
dt,

• Take variations and integrate by parts:

δL =
(
∇xC(x̂(t0 + T ))− λ̂(t0 + T )

)T
δ(t0 + T ) + λ̂(t0)Tη

+
(
λ̂(t0)− λ̂0

)T
δ(t0)

+
∫ t0+T

t0

(
d

dt
λ̂(t)T ) + λ̂(t)T∂xf(x̂(t), t)

)
δ(t) dt.

• If red parts vanish, δL = λ(t0)Tη and λ(t0) is the gradient
sought.
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A MORE COMPLICATED LAGRANGIAN

• May also use the slope k as an additional independent function:

L = C(x(t0 + T ))− λT0
(
x(t0)− α

)
−
∫ t0+T

t0
λ(t)T

(
d

dt
x(t)− k(t)

)
dt

−
∫ t0+T

t0
Λ(t)T

(
k(t)− f(x(t), t)

)
dt.
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GRADIENTS VIA LAGRANGE MULTIPLIERS: MAPPINGS

• Consider ψ(α) = Ψ(α, γ(α)), for some Ψ : Rd+d′ → R with γ(α)

defined by Ω(α, γ) = 0.

• In analogy with the preceding slide, introduce Lagrangian

L(α, γ, λ) = Ψ(α, γ) + λTΩ(α, γ).

• Then:

∇αψ|α0 = ∇αL(α, γ, λ)|(α0,γ0,λ0).

with γ0 and λ0 defined by

∇λL(α, γ, λ)|(α0,γ0,λ0) = 0, ∇γL(α, γ, λ)|(α0,γ0,λ0) = 0.
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AN EXAMPLE: ∇ψ(α1, α2) = cos2α1 + cosα1 cosα2 + sin3α2

Intermediate variables γj defined by equations
Ω1 = γ1−cosα1 = 0, Ω2 = γ2−cosα2 = 0, Ω3 = γ3−sinα2 = 0.

Lagrangian:

L = γ2
1 + γ1γ2 + γ3

3

+ λ1(γ1 − cosα1) + λ2(γ2 − cosα2) + λ3(γ3 − sinα2).

Differentiate wrt λi and get equations Ωi = 0.
Differentiate wrt γi: 2γ1 +γ2 +λ1 = 0, γ1 +λ2 = 0, γ2

3 +λ3 = 0.
Differentiate wrt αi and get gradient:

∇ψ = [λ1 sinα1, λ2 sinα2 − λ3 cosα2]T.

Leave it as it is! We are done!
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FINDING ∇αC(xN) WITHOUT INTEGRATING ADJOINT

• We illustrate with Euler’s rule. Result is however general.

• To find ∇αC(xN), multiplier approach is welcome; look at xn
and slopes kn as intermediate variables γi. The Lagrangian is

C(xN)− λT0(x0 − α)−
N−1∑
n=0

hnλ
T
n+1

[
1

hn
(xn+1 − xn)− kn

]

−
N−1∑
n=0

hnΛT
n

[
kn,i − f(xn, tn)

]
.

(Note this may be regarded as the result of using a quadrature

rule on continuous Lagrangian.)
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MATHS ARE MAGICAL

• Use of the Lagrange multiplier recipe results in:

x0 = α,

xn+1 = xn + hnf(xn, tn),

λn+1 = λn − hn∂xf(xn, tn)Tλn+1,

∇xC(xN) = λN ,

∇αC(xN) = λ0.

• But these are just the equations that we used to find ∇αC(xN)

with the clever PRK integrator.

• Standard chain rule implies a (hidden) application of symplectic

PRK.
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VARIATIONAL–ADJOINT/δ–λ/FORWARD–BACKWARD

• λN , λN−1, λN−2, . . . successively yield ∇xNC(xN), ∇xN−1C(xN),
∇xN−2C(xN), . . . (backward propagation of the gradient).

• When applying the chain rule we have to multiply Jacobian
matrices; say y = y(z), y = y(x), w = w(x).

∂(w)

∂(x)

∂(x)

∂(y)

∂(y)

∂(z)
that we write J3J2J1.

Choice of ordering J1 → J2J1 → J3J2J1 (forward, natural?) ver-
sus J3 → J3J2 → J3J2J1 (backward) is important.

• Say J3 is 3 × 200, J2 is 200 × 100 and J1 is 100 × 90 (as
in computing differential of map from R90 to R3 if there are
100 + 200 intermediate variables . . . )
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IIII. OPTIMAL CONTROL
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CONTROL PROBLEMS

Choose control function u(t) so as to minimise a cost function
C(x(t0 + T )), subject to (d/dt)x = f(x, u, t) and x(t0) = α.

With the same ideas and techniques we may deal with:

* Constrained controls (say u > 0).

* Cost functionals:

C(x(t0 + T )) +
∫ t0+T

t0
D(x(t), u(t), t) dt.

* . . . . . . . . .
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OPTIMALITY CONDITIONS

• Variational equation (ζ is the variation in u):

d

dt
δ = ∂xf(x(t), u(t), t) δ + ∂uf(x(t), u(t), t) ζ.

• Adjoint system and control constraints are:

d

dt
λ = −∂xf(x(t), u(t), t)T λ, ∂uf(x(t), u(t), t)Tλ(t) = 0.

• These ensure λ(t0+T )Tδ(t0+T ) = λ(t0)Tδ(t0). Now δ(t0) = 0,

if we impose final condition λ(t0 + T ) = ∇C(x(t0 + T )), we get

∇C(x(t0+T ))Tδ(t0+T ) = 0 (first-order condition for optimality).

• [Technical assumption: constraints define control u as functi-

ons of dual variable λ.]
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DISCRETISATION

• Discretise (d/dt)x = f(x, u, t) by RK so that control problem

becomes an optimization problem in finite-dimensional space.

• eg for Euler’s rule: x0 = α, xn+1 = xn + hnf(xn, un, tn), n =

0, . . . , N − 1.

• C(xN) is a function of state variables and controls and the RK

equations act as constraints. We have to impose conditions to

determine discrete states and controls to achieve optimality.

30



FINDING THE OPTIMAL DISCRETE SOLUTION

• Indirect approach. Numerically integrating the adjoint system

with RK method used for primal system will NOT guarantee

that discrete solution satisfies necessary first-order condition to

minimize cost.

• For that to happen, method has to be symplectic (or adjoint

system has to be integrated to get the clever overall symplectic

PRK method we saw above).

• Direct approach. If we ignore the adjoint system and just

minimize the cost as a function constrained by the RK equations,

then we automatically arrive at the same clever symplectic PRK

discretisation (Hager 2000). (The magic of maths.)
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V. APPLICATION TO MECHANICS
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LAGRANGIAN MECHANICS

• May be derived from Hamilton’s principle (1835): impose end
conditions x(t0) = α, x(t0 + T ) = β, and make stationary the
action ∫ t0+T

t0
L(x(t), u(t), t) dt

(x are the Lagrangian co-ordinates and u their velocities).

• This is a control problem for the system (d/dt)x = u with
controls u. The dual variables λ turn out to be the momenta
conjugated to x.

• Application of the theory above to the present instance just
yields the derivation of symplectic PRK algorithms as variational
integrators (Suris 1990).
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