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Abstract. Given a linear functionalL in the linear spaceP of polynomials with complex coefficients we analyze
those linear funcionals L̃ such that for a fixed α ∈ C〈

L̃, (z + z−1 − (α + ᾱ))p
〉

= 〈L, p〉 ,

for every p ∈ P.
We obtain the relation between the corresponding Carathéodory functions in such a way that a linear spectral trans-
form appears.
IfL is a positive definite linear functional, the necessary and sufficient conditions in order for L̃ to be a quasi-definite
linear functional are given. The relation between the corresponding sequences of monic orthogonal polynomials is
presented.
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1. Introduction. Let T = {ck−l}k,l>0 be an Hermitian, Toeplitz matrix. On the linear
space Λ of the Laurent polynomials (Λ = span {zn}n∈Z) with complex coefficients, we can
introduce a linear functional L : Λ→ C such that

〈L, zn〉 = cn, n > 0.

The complex number cn is said to be the nth moment associated with L. From the
Hermitian character of T we have

cn = 〈L, zn〉 = 〈L, z−n〉 = c̄−n, n ∈ Z.

Then, a bilinear functional associated with L in the linear space P of polynomials with
complex coefficients can be defined as follows (see [7], [11])

〈p(z), q(z)〉L =
〈
L, p(z)q̄(z−1)

〉
(1.1)

where p, q ∈ P.
L is said to be quasi-definite if the principal leading submatrices of T are non-singular.

In this case, there exists a unique sequence of monic polynomials {Φn}n>0 such that

〈Φn,Φm〉L = knδn,m, (1.2)

where kn = ‖Φn‖
2 , 0 for every n > 0. It is said to be the monic orthogonal polynomial

sequence associated with L.
These polynomials satisfy the following recurrence relations due to G. Szegő (see [7],

[10], [16], [19])

Φn+1(z) = zΦn(z) + Φn+1(0)Φ∗n(z), n > 0, (1.3)
Φn+1(z) = (1 − |Φn+1(0)|2)zΦn(z) + Φn+1(0)Φ∗n+1(z), n > 0, (1.4)
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where Φ∗n(z) = znΦ̄n(z−1) is the so-called reversed polynomial associated with Φn(z) (see
[16]), and the complex numbers {Φn(0)}n>1, with |Φn(0)| , 1 for every n > 1, are called
reflection (or Verblunsky) parameters. Moreover, we have

kn+1

kn
= 1 − |Φn+1(0)|2, n > 0. (1.5)

On the other hand, if the determinants of the leading principal submatrices of T are
positive, then the linear functional is said to be positive definite and it has the following
integral representation

〈L, p(z)〉 =

∫
T

p(z)dσ(z), p ∈ Λ, (1.6)

where σ is a nontrivial probability measure supported on the unit circle (see [7], [10], [11],
[16]), assuming c0 = 1. We will maintain this assumption throughout the remaining of the
manuscript.

The measure σ can be decomposed as the sum of an absolutely continuous measure with
respect to the Lebesgue measure dθ

2π and a singular measure. Thus, if ω = σ′, then

dσ(θ) = ω(θ)
dθ
2π

+ dσs(θ). (1.7)

In the positive definite case, there exists a unique sequence of orthonormal polynomials
{ϕn}n>0 such that

〈ϕn, ϕm〉L = δn,m. (1.8)

Notice that ϕn(z) = Φn(z)/‖Φn‖. Moreover, we have |Φn(0)| < 1 for every n > 1.
The n-th reproducing kernel Kn(z, y) associated with {Φn}n>0, is defined by

Kn(z, y) =

n∑
j=0

Φ j(y)Φ j(z)
k j

=
Φ∗n+1(y)Φ∗n+1(z) − Φn+1(y)Φn+1(z)

kn+1(1 − ȳz)
.

Furthermore,

Φ∗n(z) = knKn(z, 0).

In terms of the moments {cn}n>0, an analytic function in a neighborhood of z = 0

F(z) = 1 + 2
∞∑

n=1

c−nzn (1.9)

can be introduced. If L is a positive definite linear functional, then F(z) is analytic in |z| < 1
and Re (F(z)) > 0 therein. In such a case F(z) is said to be a Carathéodory function and
it can be represented as a Riesz-Herglotz transform of the nontrivial probability measure σ
introduced in (1.6) (see [7], [11], [16])

F(z) =

∫
T

w + z
w − z

dσ(w).

As a convention, if {ck}k∈Z is the sequence of moments associated with a quasi-definite func-
tional L, then the function given in (1.9) is said to be the Carathéodory function associ-
ated with L. F(z) can be interpreted as a functional "mirror" of the sequence {cn}n>0. The
Carathéodory functions for some perturbations of a measure σ (or its associated linear func-
tional) have been studied in [13] for the following three canonical cases
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(i) dσ̃ = |z − α|2dσ, α ∈ C, |z| = 1 (Christoffel transformation).

(ii) dσ̃ = dσ + mδ(z − α) + m̄δ(z − ᾱ−1), α,m ∈ C, α , 0. (Uvarov transformation).

(iii) dσ̃ = 1
|z−α|2 dσ + mδ(z − α) + m̄δ(z − ᾱ−1), |z| = 1, m ∈ C, and |α| ∈ R � {0, 1}.

(Geronimus transformation).
These three examples of canonical spectral transforms (see [3], [8], [9], [12], [14], among
others) are the analogues on the unit circle of the canonical spectral transforms on the real
line considered by several authors (see [1], [17], [21] and [22]). Moreover, if we denote these
transformations by FC(α), FU(α,m), and FG(α), respectively, then we have

Proposition 1.1.
(i) FG(α,m) ◦ FC(α) = FU(α,m).

(ii) FC(α) ◦ FG(α,m) = I (Identity transformation).
Notice that in these three cases, the corresponding Carathéodory functions are related by

F̃(z) =
A(z)F(z) + B(z)

D(z)
,

where A, B, and D , 0 are polynomials in the variable z. They constitute examples of the
so-called linear spectral transformations. Other examples of spectral transformations have
been analyzed in [13].

Furthermore, in [5], [6] we have studied a perturbation LR of L defined by

〈LR, q〉 =

〈
L,

1
2

(z − α + z−1 − ᾱ)q
〉
, q ∈ Λ, (1.10)

where α ∈ C. Here the relation between the associated Carathéodory functions is

FR(z) =
[z2 − (α + ᾱ)z + 1]F(z) + z2 + (c1 − c−1)z − 1

z
, (1.11)

i.e. this is a linear spectral transform that is not one of the canonical linear spectral transfor-
mations above mentioned. Indeed, the Christoffel transformation is a particular case of this
transformation when |Re[α]| > 1.

On the other hand, assuming that L is a quasi-definite linear functional, necessary and
sufficient conditions for the quasi-definiteness of LR are obtained in [2] and [18]. This trans-
formation is denoted by FR(α).

It is natural to analyze the existence of the inverse transformation, i.e. if there exists a
linear functional LR−1 such that〈

LR−1 , [z + z−1 − (α + ᾱ)]p(z)
〉

= 〈L, p(z)〉 , p ∈ Λ, (1.12)

as well as if the quasi-definite character of the linear functional is preserved by such a trans-
formation. This is one of the goals of our contribution. Notice that the transformation (1.12)
does not define a unique linear functional LR−1 . As we will show in Section 3, uniqueness
depends on a free parameter.
The structure of the manuscript is as follows. In section 2, we assume the linear functional
LR−1 is quasi-definite and we obtain the relation between the corresponding Carathéodory
functions. In Section 3, we analyze the conditions on the nontrivial probability measure σ
such that LR−1 is a quasi-definite linear functional and we obtain the necessary conditions for
LR−1 to be quasi-definite, an expression for the corresponding sequence of monic orthogo-
nal polynomials, and a recursive algorithm to compute its family of Verblunsky parameters.
Finally, in Section 4, several examples of this transformation for three illustrative cases of
nontrivial measures are analyzed.
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2. Carathéodory functions. Assuming that LR−1 is a quasi-definite linear functional,
we will denote its associated Carathéodory function by FR−1 (z). First we will study the rela-
tion between F(z) and FR−1 (z).

Proposition 2.1. FR−1 (z), the Carathéodory function associated to LR−1 , is a linear spec-
tral transformation of F(z) given by

FR−1 (z) =
zF(z)

z2 − (α + ᾱ)z + 1
+ m1

z + b
z − b

+ m2
z + b̄
z − b̄

, (2.1)

where b, b̄ are the zeros of z2 − (α + ᾱ)z + 1, with |b| = 1, and

m1 = −
1
2

(
c̃0 +

Im(c̃1)
Im(b)

)
, m2 = −

1
2

(
c̃0 −

Im(c̃1)
Im(b)

)
.

Proof. From (1.12), we get

c−k = c̃−(k+1) + c̃−(k−1) − (α + ᾱ)c̃−k, (2.2)

Multiplying (2.2) by zk, k = 1, 2, . . ., and replacing in (1.9), we get
∞∑

k=1

c−kzk =

∞∑
k=1

c̃−(k+1)zk +

∞∑
k=1

c̃−(k−1)zk − (α + ᾱ)
∞∑

k=1

c̃−kzk,

F(z) − 1
2

= z−1
(

FR−1 (z) − c̃0

2
− c̃−1z

)
+ z

(
FR−1 (z) − c̃0

2
+ c̃0

)
− (α + ᾱ)

(
FR−1 (z) − c̃0

2

)
,

F(z) − 1 = [z + z−1 − (α + ᾱ)]FR−1 (z) + c̃0[z − z−1 + (α + ᾱ)] − 2c̃−1.

Therefore

FR−1 (z) =
F(z) + [z−1 − z − (α + ᾱ)]c̃0 + 2c̃−1 − 1

z + z−1 − (α + ᾱ)
. (2.3)

Notice that, from (2.2), 1 + (α + ᾱ)c̃0 = c̃1 + c̃−1, and thus

FR−1 (z) =
zF(z) − c̃0z2 + (c̃−1 − c̃1)z + c̃0

z2 − (α + ᾱ)z + 1
, (2.4)

which is equivalent to (2.1).
On the other hand, from (2.1)

FR−1 (z) =

 b
b−b̄

z − b
−

b̄
b−b̄

z − b̄

 F(z) − m1(1 + b̄z)
∞∑

k=0

zk

bk − m2(1 + bz)
∞∑

k=0

bkzk,

=

 ∞∑
k=1

bk − b̄k

b − b̄
zk

 F(z) − m1

1 + 2
∞∑

k=1

b̄kzk

 − m2

1 + 2
∞∑

k=1

bkzk

 ,
and thus

c̃0 + 2
∞∑

k=1

c̃−kzk =

 ∞∑
k=1

bk − b̄k

b − b̄
zk

 1 + 2
∞∑

k=1

c−kzk

 − m1

1 + 2
∞∑

k=1

b̄kzk


− m2

1 + 2
∞∑

k=1

bkzk

 .
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Therefore, comparing coefficients of zn on both sides of the last expression, we have for n > 2

c̃−n =

n−1∑
k=1

bk − b̄k

b − b̄
c−(n−k) +

1
2

bn − b̄n

b − b̄
− m1b̄n − m2bn. (2.5)

Comparing the independent terms and the coefficients on z we can deduce (2.2) for n = 0
and n = 1.

Furthermore, denoting this transformation by FR−1 , we obtain
Proposition 2.2.
(i) FR(α) ◦ FR−1 (α) = I,

(ii) FR−1 (α) ◦ FR(α) = FU(b, m̂1) ◦ FU(b̄, m̂2).
Proof.
(i) It is evident from the definition of FR and FR−1 .

(ii) Denoting H(z) = FR−1 (α) ◦ FR(α)[F(z)],

H(z) =
zFR(z) − c̃0z2 + (c̃−1 − c̃1)z + c̃0

z2 − (α + ᾱ)z + 1
,

=
z
[

[z2−(α+ᾱ)z+1]F(z)+z2+(c1−c−1)z−1
z

]
− c̃0z2 + (c̃−1 − c̃1)z + c̃0

z2 − (α + ᾱ)z + 1
,

= F(z) +
(1 − c̃0)z2 + (c1 − c−1 + c̃−1 − c̃1)z + c̃0 − 1

z2 − (α + ᾱ)z + 1

= F(z) + m̂1
z + b
z − b

+ m̂2
z + b̄
z − b̄

,

with m̂1 = m̃1 + m1, m̂2 = m̃2 + m2, and

m̃1 =
1
2

(
1 +
Im(c1)
Im(b)

)
, m̃2 =

1
2

(
1 −
Im(c1)
Im(b)

)
.

Remark 2.3. Notice that if a = −2Re[α] and using (2.2) then we obtain

T = ZT̃ + aT̃ + T̃Zt,

where Z is the shift matrix with ones on the first upper-diagonal and zeros on the remaining
entries, and Mt denotes the transpose of the matrix M. Furthermore, notice that Hermitian
Toeplitz matrices can be characterized as T = T∗ together with ZTZt = T, and therefore

TZt = T̃B,

where B = I+aZt +(Zt)2 is an infinite lower triangular matrix with ones in the main diagonal,
with the following structure

B =


A 0 . . .

At A
. . .

0
. . .

. . .

 , (2.6)



6 K. Castillo, L. Garza and F. Marcellán

where A =
( 1 0

a 1
)
. On the other hand, is not difficult to show that

B−1 =



A1 0 0 . . .

A2 A1 0
. . .

A3 A2 A1
. . .

...
. . .

. . .
. . .


, (2.7)

where A1 = A−1, Ak = (−1)k−1A−1Mk−1, k > 2, and M = A−1At =
( 1 a
−a 1−a2

)
. In other words,

B−1 is a lower triangular block matrix, with Toeplitz structure. Finally,

TS = T̃,

where S is given by

S = ZtB−1 =



Zt
1 0 0 . . .

Z1 Zt
1 0

. . .

0 Z1 Zt
1

. . .
...

. . .
. . .

. . .





A1 0 0 . . .

A2 A1 0
. . .

A3 A2 A1
. . .

...
. . .

. . .
. . .


, (2.8)

with Z1 =
( 0 1

0 0
)
, i.e. S is also a lower triangular block matrix with Toeplitz structure.

3. Quasi-definiteness of LR−1 . Let us consider a linear functional LR−1 , such that〈
LR−1 , [z + z−1 − (α + ᾱ)]p

〉
= 〈L, p〉 , (3.1)

whereL is a positive definite Hermitian linear functional on the linear space of Laurent poly-
nomials. Notice that we will assume that LR−1 is also Hermitian.

For all values of α such that |Re(α)| > 1, the Laurent polynomial z + z−1 − (α + ᾱ) can
be represented as a polynomial of the form c|z − β|2, c ∈ R, β ∈ C, i.e LR−1 is a Geronimus
transformation, studied in [4], [15]. For this reason, we are only interested in those values of
α such that 0 < |Re(α)| < 1. However, in this case the zeros b and b̄ of z2 − (α + ᾱ)z + 1 are
complex conjugates and, furthermore, |b| = 1.

We will denote by σ and σ̃ the measures associated with L and LR−1 , respectively, i.e.

dσ̃ =
dσ

2Re(z − α)
+ m1δ(z − b) + m2δ(z − b̄), m1,m2 ∈ R. (3.2)

Here σ is a nontrivial probability measure supported on T, which can be decomposed as in
(1.7).

Thus, if σs = 0, then the integral

c̃n =

∫ 2π

0

einθω(θ)
z + z−1 − (α + ᾱ)

dθ
2π

=
1

2πi

∫
T

znω(z)
z2 − (α + ᾱ)z + 1

dz, (3.3)
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has singularities in z = b and z = b̄. These singularities can be removed if we consider

c̃n =
1

2πi

∫
T

znω(θ)
z2 − (α + ᾱ)z + 1

dz, z = eiθ, (3.4)

=
1

2πi(b − b̄)

(∫
T

znω(z)
z − b

dz −
∫
T

znω(z)
z − b̄

dz
)
, (3.5)

=
1

2πi(b − b̄)

(∫
T

zn[ω(z) − ω(b)]
z − b

dz −
∫
T

zn[ω(z) − ω(b̄)]
z − b̄

dz (3.6)

+
1
2

bnω(b) −
1
2

b̄nω(b̄)
)
, (3.7)

assuming that ω(z) satisfies a Lipschitz condition of order τ (0 < τ 6 1) on T (see [20]).
Notice than this is also valid if σs , 0, as long as σs has a finite number of mass points
different from b and b̄.

Now, assume LR−1 is quasi-definite and let {Ψn}n>0 be the its corresponding sequence of
monic orthogonal polynomials. Next, we will state the relation between {Ψn}n>0 and {Φn}n>0.

Proposition 3.1. Let L be a positive definite linear functional. If LR−1 given as in (1.12)
is a quasi-definite linear functional, then Ψn(z), the nth monic polynomial orthogonal with
respect to LR−1 , is

Ψn(z) =

(
z +

k̃n

kn−1

)
Φn−1(z) +

(
Φn(0) −

k̃n

kn−1
Ψn+1(0)

)
Φ∗n−1(z). (3.8)

Conversely, if {Ψn}n>0 is given by (3.8) and assuming |Ψn(0)| , 1, n > 1, then {Ψn}n>0 is the
sequence of monic polynomials orthogonal with respect to LR−1 .

Proof. Let

Ψn(z) = Φn(z) +

n−1∑
m=0

λn,mΦm(z). (3.9)

Multiplying the above expression by Φm(z) and applying L, for 0 6 m 6 n − 1 we get〈
L,Ψn(z)Φm(z)

〉
= λn,mkm, or equivalently, (3.10)〈

LR−1 , [z + z−1 − (α + ᾱ)]Ψn(z)Φm(z)
〉

= λn,mkm. (3.11)

Thus

λn,m =
1
km

〈
LR−1 , [z + z−1 − (α + ᾱ)]Ψn(z)Φm(z)

〉
, 0 6 m 6 n − 1. (3.12)

If m = n − 1,

λn,n−1 =
1

kn−1

[〈
LR−1 , zΨn(z)Φn−1(z)

〉
+

〈
LR−1 , z−1Ψn(z)Φn−1(z)

〉]
,

=
1

kn−1

[〈
LR−1 , [Ψn+1(z) − Ψn+1(0)Ψ∗n(z)]Φn−1(z)

〉
+ k̃n

]
,

=
k̃n

kn−1
(1 − Ψn+1(0)Φn−1(0)).
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On the other hand, for 0 6 m 6 n − 2,

λn,m =
1
km

〈
LR−1 , zΨn(z)Φm(z)

〉
,

=
1
km

〈
LR−1 , [Ψn+1(z) − Ψn+1(0)Ψ∗n(z)]Φm(z)

〉
,

= −
k̃n

km
Ψn+1(0)Φm(0).

Substituting these values in (3.9), we obtain

Ψn(z) = Φn(z) +
k̃n

kn−1
Φn−1(z) − k̃nΨn+1(0)

n−1∑
m=0

Φm(0)Φm(z)
km

, (3.13)

= Φn(z) +
k̃n

kn−1
Φn−1(z) − k̃nΨn+1(0)Kn−1(z, 0), (3.14)

= Φn(z) +
k̃n

kn−1
Φn−1(z) −

k̃n

kn−1
Ψn+1(0)Φ∗n−1(z). (3.15)

Using the recurrence relation, we get

Ψn(z) = zΦn−1(z) + Φn(0)Φ∗n−1(z) +
k̃n

kn−1
Φn−1(z) −

k̃n

kn−1
Ψn+1(0)Φ∗n−1(z), (3.16)

=

(
z +

k̃n

kn−1

)
Φn−1(z) +

(
Φn(0) −

k̃n

kn−1
Ψn+1(0)

)
Φ∗n−1(z), (3.17)

which proves the first statement of the proposition.
Notice that evaluating (3.15) at z = 0, we get

Ψn(0) =
k̃n

kn−1
Φn−1(0) + Φn(0) −

k̃n

kn−1
Ψn+1(0), (3.18)

and thus (3.17) becomes

Ψn(z) =

(
z +

k̃n

kn−1

)
Φn−1(z) +

(
Ψn(0) −

k̃n

kn−1
Φn−1(0)

)
Φ∗n−1(z). (3.19)

On the other hand, if we denote νn = k̃n+1/kn and ln = Ψn+1(0)−νnΦn(0), and considering
the reversed polynomial of Ψn+1(z), then we obtain the following linear transfer equation[

Ψn+1(z)
Ψ∗n+1(z)

]
=

[
z + νn ln

lnz νnz + 1

] [
Φn(z)
Φ∗n(z)

]
.

Notice that the determinant of the above transfer matrix is

(z + νn)(νnz + 1) − |ln|2z = νnz2 + (ν2
n + 1 − |ln|2)z + νn,

= νn(z2 + 1) + [ν2
n(1 − |Φn(0)|2) + 1 − |Ψn+1(0)|2]z

+ νn[Ψn+1(0)Φn(0) + Ψn+1(0)Φn(0)]z,
= νn(z2 − (α + ᾱ)z + 1),
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where the last equality will become clear looking at (3.22) in the following Proposition. Fur-
thermore, we get

Φn(z) =
(νnz + 1)Ψn+1(z) − lnΨ∗n+1(z)

νn[z2 − (α + ᾱ)z + 1]
,

Φ∗n(z) =
(z + νn)Ψ∗n+1(z) − l̄nzΨn+1(z)

νn[z2 − (α + ᾱ)z + 1]
,

and thus we obtain the following alternative expression that relates both sequences of poly-
nomials

[z2 − (α + ᾱ)z + 1]Φn(z) = Ψn+2(z) + ν−1
n [Ψn+1(z) − Φn+1(0)Ψ∗n+1(z)]. (3.20)

Now we prove that the sequence of monic polynomials {Ψn}n>0 given in (3.8) is orthog-
onal with respect to LR−1 . Notice that Ψn+1(z)−Ψn+1(0)Ψ∗n(z) is a polynomial of degree n + 1
that vanishes in z = 0 and thus Ψn+1(z) − Ψn+1(0)Ψ∗n(z) = zp(z) where p(z) is a polynomial of
degree n. Then,

zp(z) = (z + νn)Φn(z) + lnΦ∗n(z) − Ψn+1(0)[ln−1zΦn−1(z) + (νn−1z + 1)Φ∗n−1(z)],

= (z + νn)[zΦn−1(z) + Φn(0)Φ∗n−1(z)] + ln[Φ∗n−1(z) + Φn(0)zΦn−1(z)]

− Ψn+1(0)[ln−1zΦn−1(z) + (νn−1z + 1)Φ∗n−1(z)],

= zΦn−1(z)[z + νn + lnΦn(0) − Ψn+1(0)ln−1]
+ Φ∗n−1(z)[(z + νn)Φn(0) + ln − Ψn+1(0)(νn−1z + 1)],
= z(z + νn−1)Φn−1(z) + zln−1Φ∗n−1(z),
= zΨn(z),

where the fourth equality follows from (1.5) and (3.18). This is, {Ψn}n>0 satisfies a recurrence
relation like (1.3) and therefore it is an orthogonal sequence with respect to some linear
functional L̃. We will prove that L̃ = LR−1 . For 0 6 k 6 n − 1, consider〈

L̃, [z + z−1 − (α + ᾱ)]Φn(z)z̄k
〉

=
〈
L̃, [z2 − (α + ᾱ)z + 1]Φn(z)z̄k+1

〉
=

〈
L̃,Ψn+2(z)z̄k+1

〉
+ ν−1

n

〈
L̃, [Ψn+1(z) − Φn+1(0)Ψ∗n+1(z)]z̄k+1

〉
= 0.

On the other hand, for k = n we get〈
L̃,Ψn+2(z) + ν−1

n [Ψn+1(z) − Φn+1(0)Ψ∗n+1(z)]z̄k+1
〉

= ν−1
n k̃n+1 = kn

Thus, {Φn}n>0 is the sequence of monic polynomials orthogonal with respect to [z + z−1 − (α+

ᾱ)]L̃. But then [z + z−1 − (α + ᾱ)]L̃ = L and, therefore, L̃ = LR−1 .
Proposition 3.2. Let L be a positive definite linear functional and σ its associated mea-

sure. If LR−1 is a quasi-definite linear functional then
(i) [Im(c̃1)]2 , (1 − [Re(α)]2)c̃2

0 − Re(α)c̃0 −
1
4 ,

(ii)
(
1 − |Φn(0)|2

)
ν2

n + An+1νn + 1 − |Ψn+1(0)|2 = 0, for n > 1,
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where An = Ψn(0)Φn−1(0) + Ψn(0)Φn−1(0) + α + ᾱ.
Proof. From (2.2), for k = 0 and assuming c0 = 1, we have

Re(c̃1) =
1
2

+ Re(α)c̃0. (3.21)

In addition, for LR−1 to be a quasi-definite functional we need

det T̃2 =

∣∣∣∣∣∣ c̃0 c̃1
c̃−1 c̃0

∣∣∣∣∣∣ = c̃2
0 − [Re(c̃1)]2 − [Im(c̃1)]2 , 0,

where T̃ is the Toeplitz matrix associated with LR−1 and T̃n is its corresponding n × n leading
principal submatrix. Therefore, for the choice of α, we get

[Im(c̃1)]2 , c̃2
0 −

[
1
2

+ Re(α)c̃0

]2

,

which is (i). Thus, c̃0 and Im[c̃1] are free parameters, while Re[c̃1] is determined by c̃0 and
the choice of α.

Furthermore, we have

kn = 〈Φn(z),Φn(z)〉L = 〈Ψn(z),Φn(z)〉L ,

=
〈
[z + z−1 − (α + ᾱ)]Ψn(z),Φn(z)

〉
LR−1

,

= 〈zΨn(z),Φn(z)〉LR−1 + 〈Ψn(z), zΦn(z)〉LR−1 − (α + ᾱ) 〈Ψn(z),Φn(z)〉LR−1 ,

= −[Ψn+1(0)Φn(0) + α + ᾱ]k̃n + 〈Ψn(z), zΦn(z)〉LR−1 .

On the other hand, from (3.15)

〈Ψn(z), zΦn(z)〉LR−1 =

〈
Ψn(z), zΨn(z) −

k̃n

kn−1
zΦn−1(z) +

k̃n

kn−1
Ψn+1(0)zΦ∗n−1(z)

〉
LR−1

,

= −Ψn+1(0)Ψn(0)k̃n −
k̃n

kn−1
k̃n +

k̃n

kn−1
Ψn+1(0)Φn−1(0)k̃n,

and from (3.18),

〈Ψn(z), zΦn(z)〉LR−1 = −Ψn+1(0)Ψn(0)k̃n −
k̃n

kn−1
k̃n

+

(
Ψn(0) − Φn(0) +

k̃n

kn−1
Ψn+1(0)

)
Ψn+1(0)k̃n,

= −Ψn+1(0)Φn(0)k̃n −
k̃n

kn−1
k̃n +

k̃n

kn−1
|Ψn+1(0)|2k̃n.

Thus, if An+1 = Ψn+1(0)Φn(0) + Ψn+1(0)Φn(0) + α + ᾱ,

kn = −An+1k̃n +
(
|Ψn+1(0)|2 − 1

) k̃n

kn−1
k̃n,

1 − |Φn(0)|2 = −An+1
k̃n

kn−1
+

∣∣∣∣∣∣ k̃n

kn−1
Ψn+1(0)

∣∣∣∣∣∣2 −
(

k̃n

kn−1

)2

.
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Since, from (3.18), k̃n
kn−1

Ψn+1(0) = k̃n
kn−1

Φn−1(0) + Φn(0) − Ψn(0), we obtain

1 − |Ψn(0)|2 = −An
k̃n

kn−1
−

(
1 − |Φn−1(0)|2

) ( k̃n

kn−1

)2

.

Therefore, (
1 − |Φn−1(0)|2

) ( k̃n

kn−1

)2

+ An
k̃n

kn−1
+ 1 − |Ψn(0)|2 = 0, (3.22)

which is (ii).
Now, from (3.18),

Ψn+1(0) = Φn−1(0) + [Φn(0) − Ψn(0)]
kn−1

k̃n
, (3.23)

=
[Φn(0) − Ψn(0)]

∏n−1
k=1(1 − |Φk(0)|2)∏n

k=1(1 − |Ψk(0)|2)c̃0
+ Φn−1(0), n > 1. (3.24)

Thus, we can built an algorithm to compute recursively the sequence {Ψn+1(0)}n>1, start-
ing from Ψ1(0) = − c̃1

c̃0
. Namely,

Input: α, c̃0, {Φn(0)}n>1.
Compute Re(c̃1) = 1

2 + Re(α)c̃0.
IF (Initial condition) (i) in Proposition 3.2 holds, then
Ψ1(0) = − c̃1

c̃0
FOR n = 1, 2, . . .

Ψn+1(0) =
[Φn(0) − Ψn(0)]

∏n−1
k=1(1 − |Φk(0)|2)∏n

k=1(1 − |Ψk(0)|2)c̃0
+ Φn−1(0)

IF |Ψn+1(0)| = 1, break
END (FOR)

4. Examples.

4.1. A Christoffel case. Let dσ = |z− 1|2 dθ
2π . Is well known (see [16]) that the family of

Verblunsky parameters associated with σ is

Φn(0) =
1

n + 1
, n > 1.

Now, let us consider the perturbation

dσ̃ =
|z − 1|2

z + z−1 − (α + ᾱ)
dθ
2π
, |z| = 1, (4.1)

where Re[α] = 0.6. Notice that b = 0.6 + 0.8i. Then, according to (3.4)

c̃0 =
1

1.6i

[∫ 2π

0

|eiθ − 1|2 − 0.8
1 − (0.6 + 0.8i)e−iθ

dθ
2π
−

∫ 2π

0

|eiθ − 1|2 − 0.8
1 − (0.6 − 0.8i)e−iθ

dθ
2π

]
,

=
1

1.6i
(0.6 − 0.8i − (0.6 + 0.8i)) = −1,

and

c̃1 =
1

1.6i

[∫ 2π

0

(|eiθ − 1|2 − 0.8)eiθ

1 − (0.6 + 0.8i)e−iθ

dθ
2π
−

∫ 2π

0

(|eiθ − 1|2 − 0.8)eiθ

1 − (0.6 − 0.8i)e−iθ

dθ
2π

+
1
2

(0.6 + 0.8i)(0.8) −
1
2

(0.6 − 0.8i)(0.8)
]
,

= 0.4.
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Observe that (i) in Proposition 3.2 holds. Applying the algorithm, the first 500 Verblunsky
parameters are shown in the following figure.

Notice that all of the new Verblunsky parameters are real. They are distributed at both
sides of the origin, in nearly symmetric intervals. If we calculate for n = 2000, then the values
accumulate over such intervals. This is shown in the following figure.

4.2. The case of constant Verblunsky parameters. We consider linear functionals
such that the corresponding measures are supported on an arc of the unit circle which doesn’t
contain b1 and b2.

Such a situation appears (see [7], [16]) when Φn(0) = a, n > 1, with 0 < |a| < 1. Here
the measure σ associated with {Φn(0)}n>1 is supported on the arc ∆ν = {eiθ : ν 6 θ 6 2π − ν},
with

cos(ν/2) :=
√

1 − |a|2,

but it can have a mass point located on T. The orthogonality measure σ is given by

dσ =

√
sin( θ+ν2 ) sin( θ−ν2 )

2π sin( θ−τ2 )
dθ + mτδ(z − eiτ), (4.2)

where eiτ = 1−a
1−ā and

mτ =

 2|a|2−a−ā
|1−a| if |1 − 2a| > 1,

0 if |1 − 2a| 6 1.

Moreover, the orthonormal polynomials associated with σ are given by

ϕn(z) =
1

(1 − |a|2)n/2

(z + a)
zn

1 − zn
2

z1 − z2
− z(1 − |a|2)

zn−1
1 − zn−1

2

z1 − z2

 , n ∈ N, (4.3)
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with

z1 =
z + 1 +

√
(z − eiν)(z − e−iν)

2
,

z2 =
z + 1 −

√
(z − eiν)(z − e−iν)

2
.

Consider a perturbation of (4.2) given by

dσ̃ =
dσ

z + z−1 − (α + ᾱ)
,

with Re[α] = 0.8 and a = 0.5i. Notice that in this case, b = 0.8 + 0.6i and thus b < ∆ν. Then,

c̃0 =

∫ 5π
3

π
3

√
sin( 1

2θ + 1
6π) sin( 1

2θ −
1
6π)

2(cos θ − 0.8)π sin( θ2 )
= −0.458 76,

c̃1 =

∫ 5π
3

π
3

(cos θ + i sin θ)
√

sin( 1
2θ + 1

6π) sin( 1
2θ −

1
6π)

2(cos θ − 0.8)π sin( θ2 )
= 0.132 99,

and (i) holds. In such a situation, the algorithm becomes

Ψn+1(0) =
[a − Ψn(0)](1 − |a|2)n−1∏n

k=1(1 − |Ψk(0)|2)c̃0
+ a, n > 1, (4.4)

and computing the first 500 Verblunsky parameters, we get

As shown in the above figure, the Verblunsky parameters associated with the modified
measure have the same argument with respect to a certain point (the value of a). This is, they
are located on a straight line, at both sides of a. When n increases, the density of the points
on the line increases, as the following figure (with n = 2000) shows
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4.3. A Bernstein-Szegő case. Consider the Bernstein-Szegő, dσ =
1−|β|
|eiθ−β|2

dθ
2π , 0 < |β| <

1. It is well known ([16]) that in this case the Verblunsky parameters are given by Φ1(0) = −β,
and Φn(0) = 0, n > 2. Consider the measure dσ̃ defined by

dσ̃ =
1

[z + z−1 − (α + ᾱ)]|eiθ − β|2
dθ
2π
.

Setting Re[α] = 0.8, β = 0.5 and computing the first moments using (3.4), we get c̃0 =

−0.9308 and c̃1 = −0.2395. Thus, the algorithm gives, for the first 2000 Verblunsky parame-
ters

Notice that the behavior of the Verblunsky parameters is similar to the previous example.
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