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Abstract

In this contribution, we analyze the regularity conditions of a perturbation on a
quasi-definite linear functional by the addition of Dirac delta functionals sup-
ported on N points of the unit circle or on its complement. We also deal with
a new example of linear spectral transformation. We introduce a perturbation of a
quasi-definite linear functional by the addition of the first derivative of the Dirac
linear functional when its support is a point on the unit circle or two points sym-
metric with respect to the unit circle. Necessary and sufficient conditions for the
quasi-definiteness of the new linear functional are obtained. Outer relative asymp-
totics for the new sequence of monic orthogonal polynomials in terms of the orig-
inal ones are obtained. Finally, we prove that this linear spectral transform can be
decomposed as an iteration of Christoffel and Geronimus linear transformations.
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1. Introduction

Let consider the linear space of Laurent polynomials with complex coefficients
Λ = span{zk}k∈Z as well as the linear subspace P of polynomials with complex
coefficients. Let L be a linear functional in Λ such that

cn = 〈L, zn〉 = 〈L, z−n〉 = c̄−n,

i.e. L is an Hermitian linear functional. In P we can associate with L a bilinear
functional such that 〈p(z), q(z)〉L =

〈
L, p(z)q(z−1)

〉
. The set of complex numbers

{ck}k∈Z are called the moments associated with L, and the Gram matrix associated
with L is the Toeplitz matrix

T =



c0 c1 · · · cn · · ·

c−1 c0 · · · cn−1 · · ·
...

...
. . .

...
c−n c−n+1 · · · c0 · · ·
...

...
...

. . .


. (1)

Let us denote by Tn, the (n + 1) × (n + 1) principal leading submatrix of T. If
det(Tn) , 0 for every n > 0, thenL is said to be a quasi-definite (or regular) linear
functional. In such a case, there exists a family of monic polynomials {Φn}n>0

satisfying 〈
L,Φn(z)Φm(z−1)

〉
= knδn,m, n,m > 0,

where kn = ‖Φn(z)‖2 , 0, n > 0. {Φn}n>0 is said to be the sequence of monic
orthogonal polynomials (MOPS) with respect to L. Furthermore, we have kn =

det(Tn)/ det(Tn−1), n > 1, with the convention k0 = c0.
If det(Tn) > 0 for every n > 0, then L is said to be a positive definite linear

functional, and the integral representation holds (see [8] and [11])

〈L, p(z)〉 =

∫
T

p(z)dσ(z),

where p(z) ∈ P and dσ is a nontrivial positive measure supported on T, which
can be decomposed into dσ = σ′ dθ

2π + dσs, i.e. an absolutely continuous part
with respect to the Lebesgue measure and a singular part. Unless otherwise noted,
throughout the manuscript we will consider quasi-definite linear functionals.
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The properties of {Φn}n>0 have been extensively studied (see [8], [7], [17],
[18], among others) . They satisfy

Φn+1(z) = zΦn(z) + Φn+1(0)Φ∗n(z), n > 0, (2)

Φn+1(z) =
(
1 − |Φn+1(0)|2

)
zΦn(z) + Φn+1(0)Φ∗n+1(z), n > 0, (3)

the so-called forward and backward recurrence relations, where Φ∗n(z) = znΦ̄n(z−1)
is the reversed polynomial and the complex numbers {Φn(0)}n>1 are known as
Verblunsky coefficients (they are also called either Schur or reflection parame-
ters). It is important to notice that |Φn(0)| , 1, n > 1 (for positive definite linear
functionals, we have |Φn(0)| < 1, n > 1). Furthermore, there is a one to one
correspondence between a linear functional (or its corresponding measure), its
sequence of moments, and its family of Verblunsky coefficients ([17]). The n-th
reproducing kernel is given by

Kn(z, y) =

n∑
m=0

Φm(z)Φm(y)
km

=
Φ∗n+1(y)Φ∗n+1(z) − Φn+1(y)Φn+1(z)

kn+1(1 − ȳz)
, (4)

where the last identity holds if zȳ , 1. It is known in the literature as Christoffel-
Darboux formula. We denote by K( j,k)

n (z, y) the j-th (resp. k-th) derivative of
Kn(z, y) with respect to the variable z (resp. y).

In terms of the moments, we can define the function

F(z) = c0 + 2
∞∑

k=1

c−kzk. (5)

If L is positive definite, F is an analytic function with positive real part in D.
Moreover, it has the integral representation

F(z) =

∫
T

w + z
w − z

dσ(w),

where σ is the measure associated with L. F(z) is said to be the Carathéodory
function associated with L. For quasi-definite linear functionals, we will define
F(z) as (5).

Given a linear functional L, the following perturbations have been studied in
the last years (see [5], [6], [9], [10], [13], [14], [15] among others)

1. 〈p(z), q(z)〉LC
= 〈(z − α)p(z), (z − α)q(z)〉L, α ∈ C.
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2. 〈p(z), q(z)〉LG
=

〈
p(z)
z−α ,

q(z)
z−α

〉
L

+ mp(α)q(ᾱ−1) + m̄p(ᾱ−1)q(α), α ∈ C,|α| , 1,
m ∈ C.

3. 〈p(z), q(z)〉LU
= 〈p(z), q(z)〉L + mp(α)q(ᾱ−1) + m̄p(ᾱ−1)q(α), m ∈ C, |α| >

1.

The corresponding family of orthogonal polynomials, the Carathéodory function,
and the associated Hessenberg matrix (the matrix representation of the multiplica-
tion operator in the canonical basis of the linear space of polynomials), as well as
necessary and sufficient conditions for the regularity of the perturbed functionals
have been deeply analyzed in the literature.

The above perturbations are called, respectively, Christoffel (FC(α)), Geron-
imus (FG(α,m)), and Uvarov (FU(α,m)). They are related by

(i) FC(α) ◦ FG(α,m) = I (Identity transformation),

(ii) FG ◦ FC(α) = FU(α,m).

In particular, we will focus our attention in the Uvarov transformation. The sim-
plest of this kind of transformations is defined by

〈p(z), q(z)〉LU
= 〈p(z), q(z)〉L + mp(α)q(α), m ∈ R, |α| = 1, (6)

i.e. the addition of a real mass on a point located on the unit circle, and it was an-
alyzed in [5], where the authors obtained necessary and sufficient conditions for
the regularity of LU , the relation between the corresponding families of orthog-
onal polynomials, Carathéodory functions, Hessenberg matrices, and Verblunsky
coefficients. Later on, a generalization of this problem for positive definite linear
functionals was studied in [20], where the author studied, among other properties,
the asymptotic behavior of the Verblunsky parameters when N real masses are
added on the unit circle.

If the mass points are located outside the unit circle, then the perturbation
becomes

〈p(z), q(z)〉LU
= 〈p(z), q(z)〉L + mp(α)q(ᾱ−1) + m̄p(ᾱ−1)q(α), m ∈ C, |α| > 1,

(7)
where complex conjugates are considered in order to preserve the Hermitian char-
acter of LU . This perturbation was analyzed in [5].
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It is not so difficult to show that, in terms of the moments, perturbations (6)
and (7) can be expressed, respectively, as

c̃k = ck + mαk, k ∈ Z, (8)
c̃k = ck + mαk + m̄ᾱ−k, k ∈ Z. (9)

Furthermore, in both cases the corresponding Carathéodory functions are re-
lated by

F̃(z) =
A(z)F(z) + B(z)

D(z)
, (10)

where A, B, and D are polynomials whose coefficients depend on m and α (see
[14]). The complex function F̃ defined by (10) is said to be a linear spectral
transformation of F(z). In the case of measures supported on the real line, lin-
ear spectral transformations have been analyzed in [21], where the author proves
that any transformation of the form (10) to a Stieltjes function can be expressed
in terms of Christoffel and Geronimus transformations. Notice that in the cases
described above, the class of linear transformations is quite rich and new exam-
ples appear. Indeed, in [3] a perturbation involving the addition of masses was
studied. There, the authors considered the addition of a Lebesgue measure to a
linear functional, i.e.

〈p(z), q(z)〉L0
:= 〈p(z), q(z)〉L + m

∫
T

p(z)q(z)
dz

2πiz
, m ∈ R. (11)

Notice that only the first moment is perturbed, and thus c̃0 = c0 + m, c̃k = ck, k ∈
Z � {0}. In other words, this is equivalent to perturb the main diagonal of the
corresponding Toeplitz matrix by

T̃ = T + mI, (12)

where I is the semi-infinite identity matrix. A particular case for m = 1 was
studied on [1] and the regularity conditions for (11), as well as an expression for
the corresponding family of orthogonal polynomials, were obtained in [3].

The generalization of the previous perturbation to affect any subdiagonal of
the Toeplitz matrix is defined by

〈p(z), q(z)〉L j
:= 〈p(z), q(z)〉L + m

〈
z j p(z), q(z)

〉
Lθ

+ m̄
〈
p(z), z jq(z)

〉
Lθ
, (13)

where m ∈ C, and Lθ is the linear functional associated with the Lebesgue mea-
sure. The corresponding analysis was developed in [4]. In terms of the Toeplitz
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matrix, we have

T̃ = T +



0 · · · m 0 · · ·
... 0 · · · m · · ·

m̄
...

. . .
...

. . .

0 m̄ · · · 0 · · ·
...

...
. . .

...
. . .


,

i.e., only the j − th sub-diagonal and upper-diagonal are perturbed.
It is not difficult to see that perturbations (11) and (13) can be expressed, in

terms of the corresponding Carathéodory functions, as

F0(z) = F(z) + m,
F j(z) = F(z) + 2mz j,

so they are also linear spectral transformations in the sense of (10).
The aim of our contribution is to introduce two new examples of linear spectral

transformations associated with the first derivative of the Dirac linear functional.
The first one appears to when the support of the Dirac linear functional is a point
in the unit circle. The second one corresponds to a Dirac linear functional sup-
ported in two symmetric points with respect to the unit circle. The structure of the
manuscript is as follows.

In Section 2, an Uvarov perturbation of a quasi-definite linear functional by a
Dirac linear functional supported on N points located either on the unit circleT or
on its complement is introduced. Necessary and sufficient conditions for the reg-
ularity of the perturbed linear functional are deduced. In Section 3, we deal with
the addition of a linear functional that is the derivative of a Dirac linear functional
supported either on a point located on the unit circle T or on two points sym-
metric with respect to the unit circle. Both situations can be considered as limit
cases of the previous one but the difficulties to deal with them yield a different
approach. We prove the regularity of the perturbed linear functionals as well as
the outer relative asymptotics of the new MOPS in terms of the initial MOPS. In
Section 4, we prove that they are linear spectral transformations using the relation
between the corresponding Carathéodory functions. Furthermore, we obtain their
representation in terms of Christoffel and Geronimus transformations. Finally, in
Section 5, some illustrative examples are presented.
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2. Uvarov perturbation with N masses

Let us start our analysis with a generalization of the perturbation (6). Con-
sider a quasi-definite functional L and let LΥ be the linear functional such that its
associated bilinear functional satisfies

〈p, q〉LΥ
= 〈p, q〉L +

N∑
i=1

mi p(αi)q(αi), (14)

where mi ∈ R\{0} and |αi| = 1 for i = 1, . . . ,N. Using an analog method to the
one used in [5], we can show

Proposition 1. The following statements are equivalent.

(i) LΥ is a quasi-definite linear functional.

(ii) The matrix RN
n−1 + M−1

N is non singular, and

kn + [ΦN
n (α)]t(RN

n−1 + M−1
N )−1ΦN

n (α) , 0, n > 1. (15)

Moreover, the sequence of monic polynomials orthogonal with respect to LΥ is
given by

Υn(z) = Φn(z) −KN
n−1(z)(RN

n−1 + M−1
N )−1ΦN

n (α), n > 1, (16)

with KN
n−1(z) = [Kn−1(z, α1),Kn−1(z, α2), . . .Kn−1(z, αN)], MN = diag{m1,m2, . . . ,mN},

ΦN
n (α) = [Φn(α1),Φn(α2), . . . ,Φn(αN)]t and

RN
n−1 =


Kn−1(α1, α1) Kn−1(α1, α2) · · · Kn−1(α1, αN)
Kn−1(α2, α1) Kn−1(α2, α2) · · · Kn−1(α2, αN)

...
...

. . .
...

Kn−1(αN , α1) Kn−1(αN , α2) · · · Kn−1(αN , αN)

 .
Proof. First, assume that LΥ is a quasi-definite linear functional and denote by
{Υn}n>0 its corresponding sequence of monic orthogonal polynomials. Thus, for
n > 1,

Υn(z) = Φn(z) +

n−1∑
k=0

λn,kΦk(z), where λn,k = −

∑N
i=1 miΥn(αi)Φk(αi)

kk
, n ≥ 1.
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Then, we have

Υn(z) = Φn(z) −
N∑

i=1

miΥn(αi)Kn−1(z, αi). (17)

In particular, for j = 1, . . . ,N, we have the following system of N linear equations
and N unknowns Υn(α j), j = 1, 2, ...,N

Υn(α j) = Φn(α j) −
N∑

i=1

miΥn(αi)Kn−1(α j, αi).

Therefore,
1 + m1Kn−1(α1, α1) m2Kn−1(α1, α2) · · · mN Kn−1(α1, αN)

m1Kn−1(α2, α1) 1 + m2Kn−1(α2, α2) · · · mN Kn−1(α2, αN)
...

...
. . .

...
m1Kn−1(αN , α1) m2Kn−1(αN , α2) · · · 1 + mN Kn−1(αN , αN)

ΥN
n (α) = ΦN

n (α),

whereΥN
n (α) = [Υn(α1),Υn(α2), . . . ,Υn(αN)]. In other words, (RN

n−1MN+IN)ΥN
n (α) =

ΦN
n (α). SinceLΥ is assumed to be quasi-definite, the matrix (RN

n−1MN + IN) is non
singular and, therefore, (16) follows from (17).

On other hand, assume (ii) holds. For 0 ≤ k ≤ n − 1, we have

〈Υn(z),Φk(z)〉LΥ
=

〈
Φn(z) −

N∑
i=1

miΥn(αi)Kn−1(z, αi),Φk(z)
〉

+

N∑
i=1

miΥn(αi)Φk(αi)

= −

N∑
i=1

miΥn(αi)〈Kn−1(z, αi),Φk(z)〉 +
N∑

i=1

miΥn(αi)Φk(αi) = 0,

using the reproducing kernel property in the last expression. Furthermore,

〈Υn(z),Φn(z)〉LΥ
= kn +

N∑
i=1

miΥn(αi)Φn(αi)

= kn + [Φ
N
n (α)]tMNΥ

N
n

= kn + [ΦN
n (α)]t(RN

n−1 + M−1
N )−1ΦN

n (α) , 0,

which proves that {Υn}n>0 defined by (16) is the sequence of monic polynomials
orthogonal with respect to LΥ. �
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Remark 2. Notice that for N = 1, the regularity condition for LΥ becomes 1 +

m1Kn−1(α1, α1) , 0, n ≥ 0, as shown in [5].

Evaluating (16) in z = 0, we get

Corollary 3. For n > 1,

Υn(0) = Φn(0) −KN
n−1(0)(RN

n + M−1
N )−1ΦN

n (α). (18)

The previous expression allows us to obtain the Verblunsky coefficients asso-
ciated with the perturbed polynomials directly, provided that the original Verblun-
sky coefficients are known.

Proposition 4. For z ∈ D, the Carathéodory function associated with LΥ is

FΥ(z) = F(z) +

N∑
i=1

mi

(
αi + z
αi − z

)
.

Proof. Denoting c̃−k = 〈LΥ, z−k〉, we have

FΥ(z) = c̃0 + 2
∞∑

k=1

c̃−kzk

= c0 + 2
∞∑

k=1

c−kzk +

N∑
i=1

mi + 2
∞∑

k=1

N∑
i=1

miᾱ
k
i z

k

= F(z) +

N∑
i=1

mi

(
αi + z
αi − z

)
,

i.e., FΥ(z) has simple poles at z = αi. �

The next step is to consider a perturbation of the form (7), generalizing for
N masses, i.e. to consider the linear functional LΩ such that its corresponding
bilinear functional satisfies

〈p, q〉LΩ
= 〈p, q〉L +

N∑
i=1

(mi p(αi)q(α−1
i ) + mi p(ᾱ−1

i )q(αi)), (19)

where |αi| , 0, 1 and mi ∈ C � {0}, 1 6 i 6 N. By analogy with the previous case,
we have the following result.
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Proposition 5. The following statements are equivalent.

(i) LΩ is a quasi-definite linear functional.

(ii) the matrix R2N
n−1 + M−1

2N is non singular, and

kn + [Φ
2N
n (α)]tM2NΩ

2N
n (α) , 0, n > 1. (20)

Moreover, the corresponding sequence of monic polynomials orthogonal with re-
spect to LΩ is given by

Ωn(z) = Φn(z) −K2N
n−1(z)(R2N

n−1 + M−1
2N)−1Φ2N

n (α), n > 1, (21)

with

K2N
n−1 = [Kn−1(z, α1), . . .Kn−1(z, αN),Kn−1(z, α−1

1 ), . . . ,Kn−1(z, α−1
N )],

M2N = diag{m1, . . . ,mN ,m1, . . . ,mN},

Φ2N
n (α) = [Φn(α1), . . . ,Φn(αN),Φn(α−1

1 ), . . . ,Φn(α−1
N )]t,

R2N
n−1 =

(
Rn−1(α1,N , α1,N) Rn−1(α1,N , ᾱ

−1
1,N)

Rn−1(ᾱ−1
1,N , α1,N) Rn−1(ᾱ−1

1,N , ᾱ
−1
1,N)

)
, and

Rn−1(α1,N , α1,N) =


Kn−1(α1, α1) · · · Kn−1(α1, αN)

...
. . .

...
Kn−1(αN , α1) · · · Kn−1(αN , αN)

 .
Proceeding as in the proof or Proposition 4, we obtain

Proposition 6. For z ∈ D,

FΩ(z) = F(z) +

N∑
i=1

(
mi
αi + z
αi − z

+ m̄i
ᾱ−1

i + z

ᾱ−1
i − z

)
.

i.e., FΩ(z) has simple poles at z = αi and z = ᾱ−1
i .

3. Adding the derivative of a Dirac’s delta

3.1. Mass point on the unit circle
Given an Hermitian linear functional L, its derivative DL (see [19]) is defined

by
〈DL, p(z)〉 = −i 〈L, zp′(z)〉 , (22)
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where p ∈ Λ. Consider a perturbation of a linear functional L by the addition of
a derivative of a Dirac’s delta, i.e.〈

L̃, p(z)
〉

= 〈L, p(z)〉 + m 〈Dδα, p(z)〉 , (23)

where m ∈ R and |α| = 1. In terms of the associated bilinear functional,

〈p(z), q(z)〉L̃ = 〈p(z), q(z)〉L − im[αp′(α)q(α) − ᾱp(α)q′(α)]. (24)

Our goal is to obtain the necessary and sufficient conditions for L̃ to be a quasi-
definite linear functional, as well as an expression for its corresponding family of
orthogonal polynomials.

Proposition 7. Assume L is a quasi-definite linear functional and denote by
{Φn}n>0 its corresponding MOPS. Let consider L̃ as in (24). Then, the follow-
ing statements are equivalent:

(i) L̃ is quasi-definite.

(ii) The matrix D(α) + mKn−1(α, α), with

Kn−1(α, α) =

(
Kn−1(α, α) K(0,1)

n−1 (α, α)
K(1,0)

n−1 (α, α) K(1,1)
n−1 (α, α)

)
, D(α) =

(
0 −iα

iα−1 0

)
,

is non singular, and

kn + m[Φn(α)]t[D(α) + mKn−1(α, α)]−1Φn(α) , 0, n > 1. (25)

Furthermore, the MOPS associated with L̃ is given by

Ψn(z) = Φn(z) − m
(

Kn−1(z, α)
K(0,1)

n−1 (z, α)

)t

[D(α) + mKn−1(α, α)]−1Φn(α), (26)

where Φn(z) = [Φn(z),Φ
′

n(z)]t.

Proof. Assume L̃ is quasi-definite and denote by {Ψn}n>0 its corresponding family
of monic orthogonal polynomials. Let us consider the Fourier expansion

Ψn(z) = Φn(z) +

n−1∑
k=0

λn,kΦk(z),

11



where for n ≥ 1

λn,k =
〈Ψn(z),Φk(z)〉L

kk

=
im[αΨ

′

n(α)Φk(α) − ᾱΨn(α)Φ′

k(α)]
kk

, 0 ≤ k ≤ n − 1.

Thus,

Ψn(z) = Φn(z) +

n−1∑
k=0

im[αΨ
′

n(α)Φk(α) − ᾱΨn(α)Φ′

k(α)]
kk

Φk(z),

= Φn(z) + im
[
αΨ

′

n(α)Kn−1(z, α) − ᾱΨn(α)K(0,1)
n−1 (z, α)

]
. (27)

Taking the derivative with respect to z in the previous expression and evaluating
at z = α, we obtain the linear system

Ψn(α) = Φn(α) + im
[
αΨ

′

n(α)Kn−1(α, α) − ᾱΨn(α)K(0,1)
n−1 (α, α)

]
,

Ψ
′

n(α) = Φ
′

n(α) + im
[
αΨ

′

n(α)K(1,0)
n−1 (α, α) − ᾱΨn(α)K(1,1)

n−1 (α, α)
]
,

which yields(
Φn(α)
Φ
′

n(α)

)
=

(
1 + imᾱK(0,1)

n−1 (α, α) −imαKn−1(α, α)
imᾱK(1,1)

n−1 (α, α) 1 − imαK(1,0)
n−1 (α, α)

) (
Ψn(α)
Ψ
′

n(α)

)
, (28)

and denoting Q(z) = [Q(z),Q
′

(z)]t, we get

Φn(α) = [I2 + mKn−1(α, α)D(α)]Ψn(α),

where we use the notation

Kn−1(α, α) =

(
Kn−1(α, α) K(0,1)

n−1 (α, α)
K(1,0)

n−1 (α, α) K(1,1)
n−1 (α, α)

)
and D(α) =

(
0 −iα
iᾱ 0

)
.

Thus, the necessary condition for regularity is that I2 + mKn−1(α, α)D(α) be non
singular. Taking into account D−1(α) = D(α) we have the first part of our state-
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ment. Furthermore, from (27),

Ψn(z) = Φn(z) + m
[
Kn−1(z, α),K(0,1)

n−1 (z, α)
] ( 0 iα
−iᾱ 0

) (
Ψn(α)
Ψ′n(α)

)
= Φn(z) − m

(
Kn−1(z, α)
K(0,1)

n−1 (z, α)

)t

D(α)[I2 + mKn−1(α, α)D(α)]−1Φn(α)

= Φn(z) − m
(

Kn−1(z, α)
K(0,1)

n−1 (z, α)

)t

[D(α) + mKn−1(α, α)]−1Φn(α)

= Φn(z) − m
(

Kn−1(z, α)
K(0,1)

n−1 (z, α)

)t

[D(α) + mKn−1(α, α)]−1Φn(α).

This yields (26). Conversely, if {Ψn}n>0 is given by (27), then, for 0 6 k 6 n − 1,

〈Ψn(z),Ψk(z)〉L̃ =
〈
Φn(z) + im

[
αΨ

′

n(α)Kn−1(z, α) − ᾱΨn(α)K(0,1)
n−1 (z, α)

]
,Ψk(z)

〉
L̃

=
〈
Φn(z) + im

[
αΨ

′

n(α)Kn−1(z, α) − ᾱΨn(α)K(0,1)
n−1 (z, α)

]
,Ψk(z)

〉
L

− im
[
αΨ

′

n(α)Ψk(α) − ᾱΨn(α)Ψ′

k(α)
]

= 0.

On the other hand, for n > 1,

k̃n = 〈Ψn(z),Ψn(z)〉L̃ = 〈Ψn(z),Φn(z)〉L̃
=

〈
Φn(z) + im

[
αΨ

′

n(α)Kn−1(z, α) − ᾱΨn(α)K(0,1)
n−1 (z, α)

]
,Φn(z)

〉
L

− im
[
αΨ

′

n(α)Φn(α) − ᾱΨn(α)Φ′

n(α)
]

= kn − im
[
αΨ

′

n(α)Φn(α) − ᾱΨn(α)Φ′

n(α)
]

= kn − im[Φn(α)]t

(
0 α
−α 0

)
Ψn(α)

= kn + m[Φn(α)]t[D(α) + mKn−1(α, α)]−1Φn(α) , 0,

where we are again using the reproducing property of Kn−1(z, α). As a conclusion,
{Ψn}n>0 is the MOPS with respect to L̃. �

Notice that the addition of a Dirac’s delta derivative (on a point of the unit
circle) to a linear functional can be considered as the limit case of two equal
masses with opposite sign, located on two nearby points located on the unit circle
z1 = eiθ1 and z2 = eiθ2 , 0 6 θ1, θ2 6 2π, when θ1 → θ2. Indeed, if we set N = 2 in
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the previous Section, then the 2× 2 matrix in (15) becomes, on the limit, the 2× 2
matrix in (25). As we will show later, the same occurs for the 4 × 4 matrix in (21)
corresponding to masses located on two pairs of points outside the unit circle.

Remark 8. Using the Christoffel-Darboux formula (4), another way to express
(26) is

(z − α)2Ψn(z) = A(z, n, α)Φn(z) + B(z, n, α)Φ∗n(z), (29)

where A(z, n, α) and B(z, n, α) are polynomials of degree 2 and 1, respectively, in
the variable z, given by

A(z, n, α) = (z − α)2 −
mα

kn∆n−1

[
[Y1,1Φn(α) + Y1,2Φ

′
n(α)]Φn(α)(z − α)

+ [Y2,1Φn(α) + Y2,2Φ
′
n(α)][Φn(α)(z − α) + αΦn(α)z]

]
,

B(z, n, α) =
mα

kn∆n−1

[
[Y1,1Φn(α) + Y1,2Φ

′
n(α)]Φ∗n(α)

+ [Y2,1Φn(α) + Y2,2Φ
′
n(α)][Φ∗n(α)

′
(z − α) + αΦ∗n(α)z]

]
,

where Y1,1 = mK(1,1)
n−1 (α, α), Y1,2 = imαK(0,1)

n−1 (α, α), Y2,1 = −imᾱK(1,0)
n−1 (α, α), Y2,2 =

mαKn−1(α, α), and ∆n−1 is the determinant of the matrix D(α) + imKn−1(α, α).

3.2. Asymptotic behavior
In this subsection, we will assume L is a positive definite linear functional,

with an associated positive Borel measure σ. We are interested in the asymptotic
behavior of the orthogonal polynomials associated with the addition of the deriva-
tive of a Dirac delta on the unit circle, i.e. the polynomials {Ψn}n>0 given in (29)
(we will also assume that the regularity conditions hold). In particular, we will
study its ratio asymptotics with respect to {Φn}n>0. First, we will state a result that
will be useful in our study.

Theorem 9. [12] Let σ be a regular finite positive Borel measure supported on
(−π, π], i.e. limn→∞ κ

1/n
n = 1, κ2

n = 1/kn. Let J ∈ (−π, π) be a compact subset such
that σ is absolutely continuous in an open set containing J. Assume that σ′ is
positive and continuous at each point of J. Let l, j be non-negative integers. Then,
uniformly for θ ∈ J, z = eiθ,

lim
n→∞

zl− j

nl+ j

K(l, j)
n (z, z)

Kn(z, z)
=

1
l + j + 1

. (30)
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Proposition 10. (Outer relative asymptotics). Let L be a positive definite linear
functional, whose associated measure σ satisfies the conditions of Theorem 9. Let
{Φn}n>0 be the MOPS associated with L and {Ψn}n>0 the MOPS associated to L̃
defined as in (24). Then, uniformly in C � D,

lim
n→∞

Ψn(z)
Φn(z)

= 1. (31)

Proof. From the expression (29),

Ψn(z)
Φn(z)

=
A(z, n, α)
(z − α)2 +

B(z, n, α)
(z − α)2

Φ∗n(z)
Φn(z)

.

Since, for z ∈ C � D (see [17]),

lim
n→∞

Φ∗n(z)
Φn(z)

= 0,

it suffices to show that, for |α| = 1,

lim
n→∞

A(z, n, α)
(z − α)2 = 1.

Notice that limn→∞Φn(α) = O(1), limn→∞Φ
′

n(α) = O(n), limn→∞Φ∗n(α) = O(1),
limn→∞Φ∗

′

n (α) = O(n), and limn→∞ Kn(α, α) = O(n).
On the other hand, dividing the numerator and denominator of A(z,n,α)

(z−α)2 − 1 by
n2Kn−1(α, α), and using (30), we obtain

lim
n→∞

Φn(α)Y2,1

n2Kn−1(α, α)
= O(1/n), lim

n→∞

Φ
′

n(α)Y2,2

n2Kn−1(α, α)
= O(1/n),

lim
n→∞

Φn(α)Y1,1

n2Kn−1(α, α)
= O(1), lim

n→∞

Φ
′

n(α)Y1,2

n2Kn−1(α, α)
= O(1),

so that the numerator of A(z,n,α)
(z−α)2 − 1 behaves as ∼ O(1). Similarity, one can shows

that the denominator behaves as ∼ O(n), and therefore

lim
n→∞

A(z, n, α)
(z − α)2 = 1.

The same arguments can be applied to B(z, n, α), what ensures the result. �
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3.3. Mass points outside the unit circle
Now, consider an Hermitian linear functional L̂ such that its associated bilin-

ear functional satisfies

〈p(z), q(z)〉L̂ = 〈p(z), q(z)〉L + im[α−1 p(α)q′(ᾱ−1) − αp′(α)q(ᾱ−1)]

+ im̄[ᾱp(ᾱ−1)q′(α) − ᾱ−1 p′(ᾱ−1)q(α)], (32)

with m, α ∈ C, |α| , 0 and |α| , 1 (see [2]). As above, we are interested on
the regularity conditions for this linear functional and the corresponding family of
orthogonal polynomials. Assuming that L̂ is a quasi-definite linear functional and
following the method used in the proof of Proposition 7, we get

Ψn(z) = Φn(z) + im
[
αΨ

′

n(α)Kn−1(z, ᾱ−1) − α−1Ψn(α)K(0,1)
n−1 (z, ᾱ−1)

]
+ im̄

[
ᾱ−1Ψ

′

n(ᾱ−1)Kn−1(z, α) − ᾱΨn(ᾱ−1)K(0,1)
n−1 (z, α)

]
. (33)

Evaluating the above expression and its first derivative in α and ᾱ−1 we get the
following linear systems(

Φn(α)
Φ
′

n(α)

)
=

(
1 + imα−1K(0,1)

n−1 (α, ᾱ−1) −imαKn−1(α, ᾱ−1)
imα−1K(1,1)

n−1 (α, ᾱ−1) 1 − imαK(1,0)
n−1 (α, ᾱ−1)

) (
Ψn(α)
Ψ
′

n(α)

)
(34)

+

(
im̄ᾱK(0,1)

n−1 (α, α) −im̄ᾱ−1Kn−1(α, α)
im̄ᾱK(1,1)

n−1 (α, α) −im̄ᾱ−1K(1,0)
n−1 (α, α)

) (
Ψn(ᾱ−1)
Ψ
′

n(ᾱ−1)

)
, (35)(

Φn(ᾱ−1)
Φ
′

n(ᾱ−1)

)
=

(
imα−1K(0,1)

n−1 (ᾱ−1, ᾱ−1) −imαKn−1(ᾱ−1, ᾱ−1)
imα−1K(1,1)

n−1 (ᾱ−1, ᾱ−1) −imαK(1,0)
n−1 (ᾱ−1, ᾱ−1)

) (
Ψn(α)
Ψ
′

n(α)

)
(36)

+

(
1 + im̄ᾱK(0,1)

n−1 (ᾱ−1, α) −im̄ᾱ−1Kn−1(ᾱ−1, α)
im̄ᾱK(1,1)

n−1 (ᾱ−1, α) 1 − im̄ᾱ−1K(1,0)
n−1 (ᾱ−1, α)

) (
Ψn(ᾱ−1)
Ψ
′

n(ᾱ−1)

)
,(37)

which yield into the system of 4 linear equations with 4 unknowns(
Φn(α)
Φn(ᾱ−1)

)
=

(
I2 + mKn−1(α, ᾱ−1)D(α) m̄Kn−1(α, α)D(ᾱ−1)

mKn−1(ᾱ−1, ᾱ−1)D(α) I2 + m̄Kn−1(ᾱ−1, α)D(ᾱ−1)

) (
Ψn(α)
Ψn(ᾱ−1)

)
,

where [Q(z),R(z)]t = [Q(z),Q′(z),R(z),R′(z)]t. Thus, in order for L̂ to be a quasi-
definite linear functional, we need the 4 × 4 matrix defined as above must be non
singular. On the other hand,(
Ψn(α)
Ψn(ᾱ−1)

)
=

(
I2 + mKn−1(α, ᾱ−1)D(α) m̄Kn−1(α, α)D(ᾱ−1)

mKn−1(ᾱ−1, ᾱ−1)D(α) I2 + m̄Kn−1(ᾱ−1, α)D(ᾱ−1)

)−1 (
Φn(α)
Φn(ᾱ−1)

)
.

16



As a consequence, from (33), we get

Ψn(z) = Φn(z) − m
(

Kn−1(z, ᾱ−1)
K(0,1)

n−1 (z, ᾱ−1)

)t

D(α)Ψn(α) − m̄
(

Kn−1(z, α)
K(0,1)

n−1 (z, α)

)t

D(ᾱ−1)Ψn(ᾱ−1)

(38)
where Ψn(α) and Ψn(ᾱ−1) can be obtained from the above linear system. As-
suming that the regularity conditions hold, and following the method used in the
proof of Proposition 7, is not difficult to show that {Ψn}n>0 defined as in (38) is the
MOPS with respect to L̂.

On the other hand, it is possible to obtain a generalization of Proposition 10
for the MOPS associated with (32). As before, we can express (38) as in (29).
Using the Christoffel-Darboux formula, we obtain

Ψn(z) = [1 + Ã(z, n, α)]Φn(z) + B̃(z, n, α)Φ∗n(z),

with

Ã(z, n, α) = imᾱ−1 Φ′n(ᾱ−1)(1 − α−1z) + zΦn(ᾱ−1)
kn(1 − α−1)2 Ψn(α) − imα

Φn(ᾱ−1)
kn(1 − α−1z)

Ψ′n(α)

+ im̄α
Φ′n(α)(1 − ᾱz) + zΦn(α)

kn(1 − ᾱ)2 Ψn(ᾱ−1) − im̄ᾱ−1 Φn(α)
kn(1 − ᾱz)

Ψ′n(ᾱ−1),

B̃(z, n, α) = imα
Φ∗n(ᾱ−1)

kn(1 − α−1z)
Ψ′n(α) − imᾱ−1 Φ′

∗

n (ᾱ−1)(1 − α−1z) + zΦ∗n(ᾱ−1)
kn(1 − α−1)2 Ψn(α)

+ im̄ᾱ−1 Φ∗n(α)
kn(1 − ᾱz)

Ψ′n(ᾱ−1) − im̄α
Φ′
∗

n (α)(1 − ᾱz) + zΦ∗n(α)
kn(1 − ᾱ)2 Ψn(ᾱ−1),

where the values of Ψn(α),Ψ′n(α),Ψn(ᾱ−1) and Ψ′n(ᾱ−1) can be obtained by solving
the 4× 4 linear system shown above. Denoting the entries of the 2× 2 matrices in
(34) - (37) by {bi, j}, {ci, j}, {ai, j} and {di, j}, respectively, we get

Ψn(α) = [d1,1Φn(α) + d1,2Φ
′
n(α) + c1,1Φn(ᾱ−1) + c1,2Φ

′
n(ᾱ−1)]/∆,

Ψ′n(α) = [d2,1Φn(α) + d2,2Φ
′
n(α) + c2,1Φn(ᾱ−1) + c2,2Φ

′
n(ᾱ−1)]/∆,

Ψn(ᾱ−1) = [a1,1Φn(α) + a1,2Φ
′
n(α) + b1,1Φn(ᾱ−1) + b1,2Φ

′
n(ᾱ−1)]/∆,

Ψn(ᾱ−1) = [a2,1Φn(α) + a2,2Φ
′
n(α) + b2,1Φn(ᾱ−1) + b2,2Φ

′
n(ᾱ−1)]/∆,

where ∆ is the determinant of the 4 × 4 matrix. To get the asymptotic result, it
suffices to show that Ã(z, n, α) → 0 and B̃(z, n, α) → 0 as n → ∞. First, notice

17



that, applying the corresponding derivatives to the Christoffel-Darboux formula,
we obtain

K(0,1)
n−1 (z, y) =

Φ∗
′

n (y)Φ∗n(z) − Φ′n(y)Φn(z)
kn(1 − ȳz)

+
zKn−1(z, y)

1 − ȳz
,

K(1,0)
n−1 (z, y) =

Φ∗n(y)Φ∗
′

n (z) − Φn(y)Φ′n(z)
kn(1 − ȳz)

+
ȳKn−1(z, y)

1 − ȳz
,

K(1,1)
n−1 (z, y) =

Φ∗
′

n (y)Φ∗
′

n (z) − Φ′n(y)Φ′n(z)
kn(1 − ȳz)

+
zK(1,0)

n−1 (z, y) + ȳK(0,1)
n−1 (z, y) + Kn−1(z, y)

1 − ȳz
.

On the other hand, ifL is positive definite, and its corresponding measure belongs
to the Szegő class, then we have (see [17]) Φn(α) = O(αn), Φ′n(α) = O(nαn), and

Φn(α)
Φ∗n(α)

→ 0, |α| < 1,
Φ∗n(α)
Φn(α)

→ 0, |α| > 1.

Assume, without loss of generality, that |α| < 1. Then (see [17]), Kn(α, α) < ∞
and Kn(ᾱ−1, ᾱ−1) = O(|α|−2n), as well as Kn(α, ᾱ−1) = Kn(ᾱ−1, α) = O(n). Observe
that, except for the entries containing Kn−1(α, α) and their derivatives, all other
entries of the 4 × 4 matrix diverge, and thus its determinant diverges much faster
than any other term in the expressions for Ψn(α),Ψ′n(α),Ψn(ᾱ−1) and Ψ′n(ᾱ−1), so
that Ã(z, n, α)→ 0 and B̃(z, n, α)→ 0 as n→ ∞. As a consequence,

Proposition 11. (Outer relative asymptotics).Let L be a positive definite lin-
ear functional, whose associated measure σ satisfies the Szegő condition, i.e.,∑∞

n=1 |Φn(0)|2 < ∞. Let {Φn}n>0 be the MOPS associated with L and {Ψn}n>0 the
MOPS associated to L̃ defined as in (32). Then, uniformly in C � T,

lim
n→∞

Ψn(z)
Φn(z)

= 1. (39)

Remark 12. Spectral transformations defined by (14), (19), (24), and (32) can be
expressed by a superposition of transformations (13), as follows

(i) First, we consider the generalized Uvarov perturbations (14) and (19) of a
linear functional L. The moments c̃k, and ĉk, corresponding to the perturbed
functionals LΥ and LΩ, respectively, are given by

c̃k = 〈LΥ, zk〉 = ck +

N∑
i=1

miα
k
i = ck + Mk k = 0,±1,±2, . . .

ĉk = 〈LΥ, zk〉 = ck +

N∑
i=1

miα
k
i + miα

−k
i = ck + M̂k k = 0,±1,±2, . . .
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Therefore, the Toeplitz matrices Tn(LΥ) and Tn(LΩ) are

Tn(LΥ) = Tn + Mn+1,

Tn(LΩ) = Tn + Tn(LΥ) + M̂n+1.

Notice that

Mn+1 = M0In+1 + M1(Zn+1 + Zt
n+1) + · · · + MN(ZN

n+1 + (ZN
n+1)t)

M̂n+1 = M̂0In+1 + M̂1(Zn+1 + Zt
n−1) + · · · + M̂N(ZN

n+1 + (ZN
n−1)t)

and Zn+1 is the shift matrix with ones on the first upper-diagonal and zeros on the
remaining entries.
(ii) Now, we take the perturbations (24) and (32) of a linear functionalL. In these
cases, the moments c̃k and ĉk, for L̃ and L̂ are, respectively,

c̃k = 〈L̃, zk〉 = ck − imkαk = ck + Nk k = 0,±1,±2, . . .
c̃k = 〈L̂, zk〉 = ck + im̄kᾱ−k − imkαk = ck + N̂k k = 0,±1,±2, . . .

As a consequence, the Toeplitz matrices for L̃ and L̂ can be represented as a sum
of matrices as in the previous cases. Thus, we get

Proposition 13. The perturbations (14), (19), (24), and (32) can be expressed in
terms of the subdiagonal perturbations (13) as

LΥ =
⊕

j∈N

L j(B j), with B j = M j,

LΩ =
⊕

j∈N

L j(B j), with B j = M̂ j,

L̃ =
⊕

j∈N

L j(B j), with B j = N j,

L̂ =
⊕

j∈N

L j(B j), with B j = N̂ j,

where B j is the mass associated with the perturbation.
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4. Carathéodory functions

First, we will assume that |α| = 1. Consider the moments associated with L̃.
Notice that c̃0 = c0. For k > 1, we have c̃k =

〈
zk, 1

〉
L̃

= ck − imkαk. In a similar
way, c̃−k = c−k + imkᾱk. Therefore,

F̃(z) = c̃0 + 2
∞∑

k=1

c̃−kzk = c0 + 2
∞∑

k=1

(c−k + imkᾱk)zk = F(z) + 2im
∞∑

k=1

kᾱkzk

= F(z) + 2imᾱz
∞∑

k=1

k(ᾱz)(k−1) = F(z) + 2imz

 ∞∑
k=1

(ᾱz)k


′

= F(z) + 2imz
(

ᾱz
1 − ᾱz

)′
= F(z) −

2im
1 − ᾱz

+
2im

(1 − ᾱz)2

= F(z) +
2imα
z − α

+
2imα2

(z − α)2 .

This means that the resulting Carathéodory function is a perturbation of F(z) by
the addition of a rational function with a double pole at z = α.

Now we will assume |α| > 1 and let consider the moments associated with L̂.
Notice that ĉ0 = c0. For k ∈ N we have, from (32),

ĉk = ck − imkαk − im̄kᾱ−k,

ĉ−k = c−k + im̄kᾱk + imkα−k,

and, as a consequence,

F̂(z) = ĉ0 + 2
∞∑

k=1

ĉ−kzk

= F(z) + 2im̄
∞∑

k=1

k(ᾱz)k + 2im
∞∑

k=1

k(α−1z)k

= F(z) +
2im̄

1 − ᾱz
+

2im̄
(1 − ᾱz)2 +

2im
1 − α−1z

+
2im

(1 − α−1z)2

= F(z) −
2imα
z − α

+
2imα2

(z − α)2 −
2im̄ᾱ−1

z − ᾱ−1 +
2im̄ᾱ−2

(z − ᾱ−1)2 . (40)

This means that the resulting Carathéodory function is a perturbation of the initial
one by the addition of a rational function with two double poles at α and ᾱ−1.
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4.1. Connection to canonical transformations.
We will show that perturbations (32) can be expressed in terms of Christof-

fel and Geronimus transformations. The Carathéodory functions associated with
FC(α) and FG(α,m) have the form (10), with (see [14])

AC(z) = DG(z) = (z − α)(1 − ᾱz),
DC(z) = AG(z) = z,
BC(z) = −ᾱc0z2 + (αc−1 − ᾱc1)z + αc0,

BG(z) = ᾱc̃0z2 + 2iIm(q0)z − αc̃0,

where q0 is a free parameter that depends of the mass used in the Geronimus
transformation. Now, consider the following product of transformations

FD = FG2(α,m2) ◦ FG1(α,m1) ◦ FC2(α) ◦ FC1(α). (41)

Is not difficult to show that FD(z), the Carathéodory function associated with FD,
is given by

FD(z) = F(z) +
BC1(z)
DG1(z)

+
BG2(z)
DG2(z)

+
BC2(z)AG1(z)
DG1(z)DG2(z)

+
BG1(z)AG2(z)
DG1(z)DG2(z)

= F(z) +
BC1(z) + BG2(z)
(z − α)(1 − ᾱz)

+
z(BC2(z) + BG1(z))
(z − α)2(1 − ᾱz)2 .

Assuming that all transformations are normalized, i.e., all of the first moments are
equal to 1, and denoting K1 = αc−1 − ᾱc1 + 2iIm(q(1)

0 ) and K2 = αc−1 − ᾱc1 +

2iIm(q(2)
0 ), where q(1)

0 and q(2)
0 are the free parameters associated to FG1 and FG2 ,

respectively, we obtain

FD(z) = F(z) +
K2z

(z − α)(1 − ᾱz)
+

K1z2

(z − α)2(1 − ᾱz)2

= F(z) +
K2z(z − α)(1 − ᾱz) + K1z2

(z − α)2(1 − ᾱz)2

= F(z) +
L1

(z − α)
+

L2

(z − α)2 +
L3

(z − ᾱ−1)
+

L4

(z − ᾱ−1)2 , (42)

for some constants L1, L2, L3 and L4 satisfying

−ᾱK2 = L1 + L3,

(1 + |α|2)K2 + K1 = −(α + 2ᾱ−1)L1 + L2 − (2α + ᾱ−1)L3 + L4,

−αK2 = (ᾱ−2 + 2αᾱ−1)L1 − 2ᾱ−1L2 + (α2 + 2ᾱ−1α)L3 − 2αL4,

0 = −αᾱ−2L1 + ᾱ−2L2 − α
2ᾱ−1L3 + α2L4.
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Furthermore, comparing (40) and (42), we have L2 = −αL1 and L4 = −ᾱ−1L3.
Solving the above system, we arrive at

L1 =
α|α|2

1 − |α|2
K2, L3 = −

α

1 − |α|2
K2,

and thus, we conclude that transformation (41) is equivalent to F̂ (α−1,m), with

m =
|α|2

2i(1 − |α|2)
K2.

5. Examples

In this section, we study three examples that illustrate the behavior of the
Verblunsky parameters for the MOPS associated to the perturbation (23). First,
we study a perturbation to the Lebesgue measure σ = dθ

2π given by

dσ̃ =
dθ
2π

+ mδ
′

α,

where m ∈ R and |α| = 1. It is very well known that Φn(z) = zn is the n − th
monic orthogonal polynomial with respect to σ, and thus Ψn(z), the n − th monic
orthogonal polynomial with respect to σ̃ can be obtained using (29). Indeed,
evaluating these polynomials at z = 0, for the special case α = 1, is not difficult to
show that

Ψn(0) =

n(n−1)(n+1)
6 − in

m
n2(n−1)(n+1)

12 − 1
m2

. (43)

From the last expression, we are able to obtain the regularity condition in terms
of the mass, by setting |Ψn(0)| , 1, n > 1. Notice that |Ψn(0)| → 0, as can be seen
from (43). Thus, there exists a nonnegative integer n0, depending on m, such that
|Ψn(0)| < 1 for n > n0, but some of the preceding Verblunsky coefficients will be
of modulus greater than 1, destroying the positivity of the perturbed functional.
Indeed, from (25), we obtain that the positivity condition for this perturbation is

m2 <
12

n2(n2 − 1)
, n > 2.

Since the right side is a positive monotone decreasing sequence, we only have
a positive definite case if m = 0. The following figure shows the Verblunsky
coefficients for different values of m and α = 1.
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Figure 1. Behavior of Verblunsky coefficients for perturbations of the Lebesgue measure.

On the other hand, if we take dσ =
1−|β|2

|1−βz|2
dθ
2π , the normalized Bernstein-Szegő

measure, with |β| < 1, whose corresponding MOPS is given by Φn(z) = zn − βzn−1,
then the Verblunsky parameters associated with the perturbation (22) are shown
below, for different values of m and α, as indicated in the figure.
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Figure 2. Behavior of Verblunsky coefficients for perturbations of the Bernstein-Szegő measure.

Finally, we exhibit the behavior of the Verblunsky parameters associated to
the perturbation (22) for an absolutely continuous weight σ defined by the Féjer
kernel as follows (see [16])

dσ =
1

N + 1

∣∣∣∣∣∣zN+1 − 1
z − 1

∣∣∣∣∣∣2 dθ
2π
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whose MOPS Φn(z), 0 6 n 6 N + 1, N = 0, 1, 2, . . . are given by

Φ0(z) = 1

Φn(z) =
1

2N − n + 3
−

2N − n + 2
2N − n + 3

zn−1 + zn, 1 6 n 6 N + 1.

For N = 30 the following figure shows the behavior of the perturbed Verblunsky
coefficients for several values of m and α.
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Figure 3. Behavior of Verblunsky coefficients for perturbations of the Féjer Kernel.
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