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In this paper we deal with Hankel determinants of the form

det[ai+j+r(x)]ni,j=0, where r is a non-negative integer, an+r(x) =
an+r + an+r−1x + · · · + a0x

n+r and (an)n�0 is a sequence com-

plex numbers. When a0 �= 0 and the Hankel determinants asso-

ciated with the sequence (an+r+1)n�0 are not identically zero, we

show that (det[ai+j+r(x)]ni,j=0)n�0 is a sequence of polynomials sat-

isfying a three-term recurrence relation. We illustrate our result by

evaluating the Hankel determinant associated with the sequence

det
[∑l+k+r

ν=0
1

l+k+r+1−ν

(
2(l+k+r−ν)
l+k+r−ν

)
xν
]n
l,k=0, for r = 0 and r = 1.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let A := (an)n�0 be a sequence of complex numbers. For any integer r � 0, we set A(r) :=
(an+r)n�0. By convention, A(0) = A. The Hankel transform of the sequence A(r) is the sequence of the

so-called shifted Hankel determinants H0(A
(r)), H1(A

(r)), . . . , (see [7]) given by

Hn(A
(r)) = det[al+k+r]nl,k=0. (1.1)

Note that these are determinants of (n + 1) × (n + 1) matrices.

Since the 19th century, the evaluation of Hankel determinants has attracted attention as one of the

most interesting topics in the framework of the moment theory and orthogonal polynomials. In the
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literature (see [5,6]), several techniques for the evaluation of many classes of Hankel determinants are

described. One also can find there an extensive bibliography on the subject.

The aim of our contribution is focused on the evaluation of the Hankel determinants with a certain

class of monic polynomials as entries. The basic idea of this work comes from [11], where the author

evaluates the Hankel determinant associated with the Catalan numbers by applying the technique of

γ -operator on the Hankel determinant associated with a particular sequence of monic polynomials

satisfying a two-term recurrence relation. For more information on the technique of γ -operator, see

[11,12].

We derive an explicit formula for this class of Hankel determinants using another approach based

on some elementary properties of determinants and the theory of orthogonal polynomials.

2. Preliminaries

Let P be the linear space of polynomials in one variable with complex coefficients and P
′ its dual

space. We denote by 〈U , p〉 the action of U ∈ P
′ on p ∈ P and by (U )n := 〈U , xn〉, n � 0, the

sequenceofmomentsofU withrespect to thepolynomial sequence {xn}n�0.Letusdefine the following

operations in P
′. For linear functionals U and V , any polynomial q, and any (a, b, c) ∈ C

∗ × C
2, let

DU = U ′, qU , (x − c)−1U , τ−bU , haU , and U V be the linear functionals defined by duality (see

[3,8,9])

〈U ′, p〉 := −〈U , p′〉,
〈qU , p〉 := 〈U , qp〉,
〈(x − c)−1

U , p〉 := 〈U , θcp〉 =
〈
U ,

p(x) − p(c)

x − c

〉
,

〈τ−bU , p〉 := 〈U , τbp〉 = 〈U , p(x − b)〉,
〈haU , p〉 := 〈U , hap〉 = 〈U , f (ax)〉,
〈U V , p〉 := 〈U , V p〉, p ∈ P,

where the right-multiplication of V by a polynomial p is a polynomial given by

(V p)(x) :=
〈
Vy,

xp(x) − yp(y)

x − y

〉
, p ∈ P.

Notice that deg(V p) = deg p if and only if (V )0 �= 0.
We can associate with the sequence A = (an)n�0 a unique linear functional U ∈ P

′ by setting

(U )n = an, n � 0. (2.1)

The linear functional U is said to be quasi-definite if Hn(A) �= 0 for every integer n � 0, [3]. In this

case, there exists a unique sequence of monic polynomials (SMP) (Pn)n�0, i.e., Pn(x) = xn+ lower

degree terms, such that

(i) 〈U , xνPn〉 = 0, ν = 0, 1, . . . , n − 1.
(ii) 〈U , xnPn〉 �= 0.

(Pn)n�0 is said to be the sequence of monic orthogonal polynomials (SMOP) with respect to U . It

is very well known that Pn(x) can be represented as a determinant (see [3])

P0(x) = 1, Pn(x) = (−1)n

Hn−1(A)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x . . . xn

a0 a1 . . . an

a1 a2 . . . an+1

...
...

...

an−1 an . . . a2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n � 1. (2.2)
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The orthogonality of (Pn)n�0 can be characterized by a three-term recurrence relation (TTRR), accord-

ing to the Favard’s theorem (see [3, p. 21]),{
P−1(x) = 0, P0(x) = 1,

Pn+1(x) = (x − βn)Pn(x) − γnPn−1(x), n � 0,
(2.3)

where βn ∈ C, γn ∈ C
∗ for every integer n � 0, and γ0 = (U )0.

Furthermore, from the general theory of orthogonal polynomials (see [9])

βn = 〈U , xP2n〉
〈U , P2n〉

, γn+1 = 〈U , P2n+1〉
〈U , P2n〉

, n � 0, (2.4)

〈U , P2n〉 =
n∏

ν=0

γν = Hn(A)

Hn−1(A)
, n � 0, H−1(A) = 1. (2.5)

We can associate to the sequence A = (an)n�0 a sequence of polynomials (an(x))n�0 given by [11]

an(x) :=
n∑

ν=0

an−νx
ν, n � 0. (2.6)

Notice that the polynomials an(x) satisfy

a−1(x) = 0, an(x) = xan−1(x) + an, n � 0. (2.7)

Thus, deg an(x) = n if and only if a0 �= 0.

In this paper we investigate the Hankel transform of the sequence of polynomials (an+r(x))n�0

where r is a fixed non-negative integer. Indeed, we define the sequence of determinants (Hn+r(
A
r |

x))n�0, where

Hn+r(
A
r | x) := det

[
al+k+r(x)

]n
l,k=0, n � 0. (2.8)

As a convention, for r = 0 we write Hn(A | x) = Hn(
A
0| x).

From an+r(0) = an+r we get Hn+r(
A
r | 0) = Hn(A

(r)).

ForA = C, letCn =
(
2n

n

)
/(n+1)denote thenth Catalannumber. In [11] theγ -operator technique is

introduced to obtain a differential equation satisfied byHn(C | x) and, as a consequence, the following

evaluation is proved

Hn(C | x) =
n∑

ν=0

(−1)ν
(
n + ν

n − ν

)
xν .

In [11], it is also shown that Hn(C | x) has n real simple zeros on the interval (0, 4). Furthermore,

(Hn(C | x))n�0 is a Sturm sequence whose zeros satisfy the interlacing property. Here, we will show

that (Hn(C | x))n�0 is a SMOP with respect to a positive-definite linear functional.

When a0 �= 0 and the linear functional xr+1U is quasi-definite, i.e., Hn(A
(r+1)) �= 0, for all n � 0,

in Corollary 1wewill prove thatHn+r(
A
r | x) is a polynomialwith deg Hn+r(

A
r | x) = n+r. Furthermore,

the sequence of monic polynomials defined by ((−1)n(a0Hn−1(A
(r+1)))−1Hn+r(

A
r | x))n�1 satisfies a

three-term recurrence relation. In particular,weprove that ((−1)n(a0Hn−1(A
(r+1)))−1Hn+r(

A
r | x))n�1

is a subsequence of a sequence of monic orthogonal polynomials if and only if either r = 0 or r = 1.

Indeed, for r = 0 the SMP (Ĥn(A | x))n�0 defined by Ĥ0(A | x) = 1 and Ĥn(A | x) =
(−1)n(a0Hn−1(A

(1)))−1Hn(A | x), n � 1, is a SMOP. More precisely, it is a co-recursive SMOP

with respect to the linear functional xU . On the other hand, for r = 1 the SMP (Ĥn(
A
1| x))n�0 where

Ĥ0(
A
1| x) = 1, Ĥ1(

A
1| x) = x + a

−1
0 a1 and Ĥn(

A
1| x) = (−1)n(a0Hn−1(A

(2)))−1Hn+1(
A
1| x), n � 1, is

also a SMOP.
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The paper is organized as follows. In Section 2, the proofs of our main results are given. We obtain

(see Theorem 3) a first evaluation of the Hankel determinants Hn+r(
A
r | x) in the general setting.

From there, the evaluation of these Hankel determinants (see Corollary 1) becomes more useful and

feasible, assuming the linear functional is quasi-definite. In Section 3, we focus our attention on the

orthogonality of the polynomial sequence ((−1)n(a0Hn−1(A
(r+1)))−1Hn+r(

A
r | x))n�1, where r = 0 or

r = 1. Finally, some illustrative examples based on the Catalan numbers are presented.

3. Main results

Using (1.8), elementary row operations yield

Hn+r(
A
r | x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ar(x) ar+1(x) . . . an+r(x)

ar+1 ar+2 . . . an+r+1

ar+2 ar+3 . . . an+r+2

...
...

...

an+r an+r+1 . . . a2n+r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n � 1. (3.1)

Expanding the above determinant by the first row, we get

Hn+r(
A
r | x) =

n∑
j=0

(−1)jDj+1,raj+r(x), (3.2)

where Dj,r denotes the determinant of the n×n matrix obtained by deleting the jth column of the

n×(n + 1) matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ar+1 ar+2 . . . an+r+1

ar+2 ar+3 . . . an+r+2

...
...

...

an+r an+r+1 . . . a2n+r

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, n � 1. (3.3)

Notice that Dn+1,r = Hn−1(A
(r+1)).

From (1.7) and (2.2), we get the following result.

Lemma 1. Let A = (an)n�0 be a sequence of complex numbers and let U ∈ P
′ be such that (U )n = an,

n � 0. The following statements are equivalent.

(a) deg Hn+r(
A
r | x) = n + r, n � 0.

(b) a0 �= 0 and Hn−1(A
(r+1)) �= 0, n � 1.

(c) a0 �= 0 and xr+1U is quasi-definite.

The next lemma will play an important role in the sequel.

Lemma 2. Let A = (an)n�0 be a sequence of complex numbers and let U ∈ P
′ be such that (U )n = an,

n � 0. Suppose (an(x))n�0 is defined as in (1.7). Then

an(x) = (U xn)(x), n � 0. (3.4)

Proof. From (1.2) and (1.7), we obtain

(U xn)(x) =
〈
Uy,

xn+1 − yn+1

x − y

〉
=

n∑
ν=0

(U )n−νx
ν =

n∑
ν=0

an−νx
ν = an(x), n � 0.

Thus, our statement holds. �
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As a straightforward consequence of Lemma 2 and (2.1) the following expression of the Hankel

determinants Hn(
A
r | x) holds.

Theorem 3. Let A = (an)n�0 be a sequence of complex numbers and letU ∈ P
′ be such that (U )n = an,

n � 0. For any integer r � 0, we have

Hn+r(
A
r | x) = U xrQn(x; A(r+1)), n � 0, (3.5)

where Q0(x; A(r+1)) = 1, Qn(x; A(r+1)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x . . . xn

ar+1 ar+2 . . . an+r+1

ar+2 ar+3 . . . an+r+2

...
...

...

an+r an+r+1 . . . a2n+r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n � 1.

According to (1.3), ifHn−1(A
(r+1)) �= 0, n � 1, then the sequence ofmonic polynomials defined

by ((−1)nHn−1(A
(r+1))

−1
Qn(x; A(r+1)))n�0 is orthogonalwith respect to the linear functional xr+1U .

Furthermore,

Q̂n(x; A(r+1)) := (−1)n

Hn−1(A(r+1))
Qn(x; A(r+1)), n � 0, (3.6)

then, the SMOP (Q̂n(x; A(r+1)))n�0 satisfies the TTRR,⎧⎪⎪⎨
⎪⎪⎩
Q̂−1(x; A(r+1)) = 0, Q̂0(x; A(r+1)) = 1,

Q̂n+1(x; A(r+1)) = (x − α
(r+1)
n )Q̂n(x; A(r+1))−

λ
(r+1)
n Q̂n−1(x; A(r+1)), n � 0,

(3.7)

where α
(r+1)
n ∈ C, λ

(r+1)
n ∈ C

∗, and λ
(r+1)
0 = ar+1.

Assuming a0 �= 0 and Hn−1(A
(r+1)) �= 0, n � 1, the polynomials Ĥn+r(

A
r | x), n � 1, given by

Ĥn+r(
A
r | x) := (−1)n

a0Hn−1(A(r+1))
Hn+r(

A
r | x) = a

−1
0 U xrQ̂n(x; A(r+1)), (3.8)

are monic and deg Hn+r(
A
r | x) = n + r.

Under the above assumptions, we get the following:

Corollary 1. Let A = (an)n�0 be a sequence of complex numbers and letU ∈ P
′ be such that (U )n = an,

n � 0. Suppose that a0 �= 0 and the linear functional xr+1U is quasi-definite. Then the SMP (Ĥn+r(
A
r |

x))n�1 given by

Ĥn+r(
A
r | x) = (−1)n

a0 det[al+k+r+1]n−1
l,k=0

det

⎡
⎣l+k+r∑

ν=0

al+k+r−νx
ν

⎤
⎦n

l,k=0

, n � 1,

satisfies the following three term recurrence relation (TTRR)⎧⎪⎪⎨
⎪⎪⎩
Ĥr(

A
r | x) = a

−1
0 U xr,

Ĥr+1(
A
r | x) = (x − α

(r+1)
0 )Ĥr(

A
r | x) + a

−1
0 ar+1,

Ĥn+r+1(
A
r | x) = (x − α

(r+1)
n )Ĥn+r(

A
r | x) − λ

(r+1)
n Ĥn+r−1(

A
r | x), n � 1,

(3.9)

where α
(r+1)
n and λ

(r+1)
n are the coefficients in the TTRR for the SMOP with respect to xr+1U .
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Proof. First, we need the following formula (see [9])

(U xp)(x) = x(U p)(x) + 〈yUy, p(y)〉, p ∈ P. (3.10)

From (2.7), (2.8), and (2.10) with p(x) = xrQ̂n(x, A
(r+1)), we get

Ĥn+r+1(
A
r | x) = (x − α(r+1)

n )Ĥn+r(
A
r | x) − λ(r+1)

n Ĥn+r−1(
A
r | x)+

a
−1
0 〈yr+1

Uy, Q̂n(y, A
(r+1))〉, n � 2.

Since (Q̂n(x, A
(r+1))n�0 is a SMOP with respect to xr+1U , then 〈yr+1Uy, Q̂n(y, A

(r+1))〉 = ar+1δn,0,
n � 0. Therefore,

Ĥn+r+1(
A
r | x) = (x − α(r+1)

n )Ĥn+r(
A
r | x) − λ(r+1)

n Ĥn+r−1(
A
r | x), n � 2,

By adding Ĥr(
A
r | x) = a

−1
0 U xr and, proceeding as above, we get Ĥr+1(

A
r | x) = (x − α

(r+1)
0 )Ĥr(

A
r |

x) + a
−1
0 ar+1. �

4. Special cases and illustrative examples

From Favard’s Theorem and (2.9) , we can deduce that for r � 2 the SMP (Ĥn(
A
r | x))n�r is not a

subsequence of a SMOP. Whereas for r = 0, 1 we will show that {Ĥn(
A
r | x)}n�r is a subsequence of a

SMOP {Ĥn(
A
r | x)}n�0.

4.1. Evaluation of det[∑l+k
ν=0 al+k−νx

ν]nl,k=0

Let us take r = 0 in Corollary 1 and assume Ĥ0(A | x) = 1. Then, the SMP (Ĥn(A | x))n�0 satisfies

the following TTRR,⎧⎨
⎩Ĥ0(A | x) = 1, Ĥ1(A | x) = x − α

(1)
0 + a

−1
0 a1,

Ĥn+1(A | x) = (x − α
(1)
n )Ĥn(A | x) − λ

(1)
n Ĥn−1(A | x), n � 1.

(4.1)

So, the SMP (Ĥn(A | x))n�0 is the co-recursive of the SMOP (Q̂n(x, A
(1)))n�0, since it is generated by

the TTRR (2.7) with r = 0, where α
(1)
0 is replaced by α

(1)
0 − a1a

−1
0 . For more information, see [3,9].

Denoting by (Q̂
(1)
n (x, A(1)))n�0 the first kind associated SMOP of the sequence (Q̂n(x, A

(1)))n�0 that

is defined by the following TTRR (see [3])⎧⎨
⎩Q̂

(1)
−1 (x, A

(1)) = 0, Q̂
(1)
0 (x, A(1)) = 1,

Q̂
(1)
n+1(x, A

(1)) = (x − α
(1)
n+1)Q̂

(1)
n (x, A(1)) − λ

(1)
n+1Q̂

(1)
n−1(x, A

(1)), n � 0,
(4.2)

we get

Ĥn(A | x) = Q̂n(x, A
(1)) + a1a

−1
0 Q̂

(1)
n−1(x, A

(1)), n � 0. (4.3)

From (3.3) and Corollary 1 with r = 0, the following evaluation of the Hankel determinant

det[∑l+k
ν=0 al+k−νx

ν]nl,k=0 holds.

Corollary 2. Let A = (an)n�0 be a sequence of complex numbers and letU ∈ P
′ be such that (U )n = an,

n � 0. Assuming that a0 �= 0 and the linear functional xU is quasi-definite, if (Q̂n(x, A
(1)))n�0 is the

corresponding SMOP, then

det

⎡
⎣ l+k∑

ν=0

al+k−νx
ν

⎤
⎦n

l,k=0

= a0(−1)n det[al+k+1]n−1
l,k=0Q̂

∗
n (x, A(1)), n � 1,



W. Chammam et al. / Linear Algebra and its Applications 436 (2012) 2105–2116 2111

where (Q̂∗
n (x, A(1)))n�0 is the co-recursive SMOP of the SMOP (Q̂n(x, A

(1)))n�0, given by

Q̂∗
n (x, A(1)) = Q̂n(x, A

(1)) + a
−1
0 a1Q̂

(1)
n−1(x, A

(1)), n � 0.

As an application of the previous result, we will recover (see [11]) the evaluation of Hn(C | x) =
det

[∑l+k
ν=0

1
l+k+1−ν

(
2(l+k)−2ν)

l+k−ν

)
xν

]n
l,k=0

.

First, let us take in Corollary 2, A = C where Cn =
(
2n

n

)
/(n + 1), the nth Catalan number. Notice

that (n + 2)Cn+1 = (4n + 2)Cn, n � 0. So, the related linear functional U with (U )n = Cn, n � 0,
is a solution of the functional equation(

x(x − 4)U
)′ + 2(−x + 1)U = 0. (4.4)

According to [8,10], U = h−2 ◦ τ−1J ( 1
2
, − 1

2
), where J ( 1

2
, − 1

2
) is the Jacobi monic linear functional

with parameters α = −β = 1/2, i.e., Chebyshev linear functional of the third kind.

In the same way, U1 := xU is monic (i.e., (U1)0 = 1) and positive-definite. Indeed, according to

(3.4) U1 satisfies(
x(x − 4)U1

)′ + 3(−x + 2)U1 = 0. (4.5)

From [10], U1 = h−2 ◦ τ−1J ( 1
2
, 1
2
), where J ( 1

2
, 1
2
) is the Chebyshev linear functional of the second

kind.

Here, the SMOP (Q̂n(x, C
(1)))n�0 with respect to U1 is given by

Q̂n(x, C
(1)) = (−2)nÛn

(
2 − x

2

)
, n � 0, (4.6)

where (Ûn(x))n�0 is the Chebyshev SMOP of second kind.

Using the TTRR satisfied by (Ûn(x))n�0 (see [10]) we get the following TTRR satisfied by

(Q̂n(x, C
(1)))n�0,{
Q̂−1(x, C

(1)) = 0, Q̂0(x, C
(1)) = 1,

Q̂n+1(x, C
(1)) = (x − 2)Q̂n(x, C

(1)) − Q̂n−1(x, C
(1)), n � 0.

(4.7)

From (3.7) and (1.6), we recover the well-known Hankel determinant evaluation [1,4],

det[Cl+k+1]nl,k=0 = 1, n � 0. (4.8)

Using again (3.7) we obtain the following relation:

Q̂ (1)
n (x, C(1)) = Q̂n(x, C

(1)), n � 0. (4.9)

From Corollary 2 with A = C and by taking into account (3.6), (3.8), and (3.9) we obtain

det

⎡
⎣ l+k∑

ν=0

Cl+k−νx
ν

⎤
⎦n

l,k=0

= 2nÛn

(
2 − x

2

)
− 2n−1Ûn−1

(
2 − x

2

)
, n � 1. (4.10)

By (3.3) with A = C and (3.9), the SMOP (Ĥn(C | x))n�0 and (Q̂n(x, C
(1)))n�0 verify the following

connection relation:

Ĥn(C | x) = Q̂n(x, C
(1)) + Q̂n−1(x, C

(1)), n � 0.

From (3.1) with A = C, we get the TTRR satisfied by (Ĥn(C | x))n�0,{
Ĥ0(C | x) = 1, Ĥ1(C | x) = x − 1,

Ĥn+1(C | x) = (x − 2)Ĥn(C | x) − Ĥn−1(C | x), n � 1.
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From [10], we get Ĥn(C | x) = 2nĴn

(
x−2
2

; − 1
2
, 1
2

)
, n � 0, where

(
Ĵn(x; − 1

2
, 1
2
)
)
n�0

is the Chebyshev

SMOP of the fourth kind. Hence, the following evaluation holds

det

⎡
⎣ l+k∑

ν=0

Cl+k−νx
ν

⎤
⎦n

l,k=0

= (−1)nĴn

(
x − 2

2
; −1

2
,
1

2

)
, n � 0. (4.11)

Notice that (Ĥn(C | x))n�0 is a SMOPwith respect to a positive definite linear functional. Thus their

zeros satisfy the interlacing property (see [3]).

Based on some properties of the Chebyshev SMOP of the second kind (Ûn(x))n�0, we can prove the

following result.

Lemma 4

det

⎡
⎣ l+k∑

ν=0

Cl+k−νx
ν

⎤
⎦n

l,k=0

= cos
((

n + 1
2

)
z
)

cos
(
z
2

) , (4.12)

where x = 2
(
1 − cos(z)

)
. On the other hand,

det

⎡
⎣ l+k∑

ν=0

Cl+k−νx
ν

⎤
⎦n

l,k=0

= (−1)n
n−1∏
ν=0

(
x − 4 sin2

[
(2ν + 1)

2n + 1

π

2

])
, n � 1. (4.13)

Proof. The Chebyshev polynomials of second kind are defined by (see [2]),

Ûn(cos(z)) = sin
(
(n + 1)z

)
2n sin(z)

, n � 0.

Letting x = 2(1 − cos(z)) into the right-hand side of (3.10), we get

det

⎡
⎣ l+k∑

ν=0

Cl+k−νx
ν

⎤
⎦n

l,k=0

= sin
(
(n + 1)z

) − sin(nz)

sin(z)

= cos
((

n + 1
2

)
z
)

cos
(
z
2

) .

Hence (3.12) holds.

Since zν = (2ν+1)π
2n+1

, ν = 0, 1, . . . , n − 1, are the zeros of cos
(
(n + 1

2
)z
)
then xν = 2

(
1 −

cos( (2ν+1)π
2n+1

)
) = 4 sin2

( (2ν+1)
2n+1

π
2

)
are the zeros of the polynomial 2nÛn(

2−x
2

) − 2n−1Ûn−1(
2−x
2

).

Taking into account the degree of this polynomial is n, then

2nÛn

(
2 − x

2

)
− 2n−1Ûn−1

(
2 − x

2

)
= (−1)n

n−1∏
ν=0

(
x − 4 sin2

[
(2ν + 1)

2n + 1

π

2

])
, n � 1.

Hence (3.13) holds. �

Furthermore, we need the following identities which can be derived in a straightforward way from

(3.11), (3.12), and (3.13).

Ĵn

(
x − 2

2
; −1

2
,
1

2

)
= cos

((
n + 1

2

)
z
)

(−1)n cos
(
z
2

) =
n−1∏
ν=0

(
x − 4 sin2

[
(2ν + 1)

2n + 1

π

2

])
, (4.14)

for any integer n � 1, where x = 2(1 − cos(z)).
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Next, we evaluate det
[∑l+k

ν=0 Cl+k−νx
ν
]n
l,k=0 for some special values of x.

• For x = 0 and z = 0 in (3.12) and (3.13), we find

det
[
Cl+k

]n
l,k=0 = 2n

n−1∏
ν=0

sin

[
(2ν + 1)

2n + 1

π

2

]
= 1.

• For x = 1 and z = π
3
in (3.12) and (3.13),

det

⎡
⎣ l+k∑

ν=0

Cl+k−ν

⎤
⎦n

l,k=0

=
n−1∏
ν=0

(
1 − 2 cos

[
(2ν + 1)π

2n + 1

])
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if n ≡ 0, 5 (mod 6)

0, if n ≡ 1, 4 (mod 6)

−1, if n ≡ 2, 3 (mod 6).

• For x = 2 and z = π
2
in (3.12) and (3.13),

det

⎡
⎣ l+k∑

ν=0

Cl+k−ν2
ν

⎤
⎦n

l,k=0

= (−2)n
n−1∏
ν=0

cos

[
(2ν + 1)π

2n + 1

]
= (−1)

n(n+1)
2 .

• For x = 3 and z = 2π
3

in (3.12) and (3.13),

det

⎡
⎣ l+k∑

ν=0

Cl+k−ν3
ν

⎤
⎦n

l,k=0

= (−1)n
n−1∏
ν=0

(
1 + 2 cos

[
(2ν + 1)π

2n + 1

])

=
⎧⎨
⎩ 1, if n ≡ 0, 2 (mod 3)

−2, if n ≡ 1 (mod 3).

• For x = 4 and z = π in (3.12) and (3.13),

det

⎡
⎣ l+k∑

ν=0

Cl+k−ν4
ν

⎤
⎦n

l,k=0

= (−1)n(2n + 1)

n−1∏
ν=0

cos

[
(2ν + 1)

2n + 1

π

2

]
= 2−n

√
2n + 1.

Moreover, since (see [11])
∑n

ν=0 Cn−ν4
ν = 22n+1 −

(
2n+1

n+1

)
, n � 0, we obtain

det

[
22(l+k)+1 −

(
2(l + k) + 1

l + k + 1

)]n
l,k=0

= (−1)n(2n + 1).

• For x = 2 − √
2 and z = π

4
in (3.12) and (3.13),

det

⎡
⎣ l+k∑

ν=0

Cl+k−ν(2 − √
2)ν

⎤
⎦n

l,k=0

= (−1)n
n−1∏
ν=0

(
2 cos

[
(2ν + 1)π

2n + 1

]
− √

2

)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if n ≡ 0, 7 (mod 8)

−1, if n ≡ 3, 4 (mod 8)√
2 − 1, if n ≡ 1, 6 (mod 8)

1 − √
2, if n ≡ 2, 5 (mod 8).
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4.2. Evaluation of det[∑l+k+1
ν=0 al+k+1−νx

ν]nl,k=0

Let us take r = 1 in Corollary 1 and let us put Ĥ0(
A
1| x) = 1 and Ĥ1(

A
1| x) = x + a

−1
0 a1. Then the

SMP (Ĥn(
A
1| x))n�0 satisfies the following TTRR,⎧⎪⎪⎨

⎪⎪⎩
Ĥ0(

A
1| x) = 1, Ĥ1(

A
1| x) = x + a

−1
0 a1,

Ĥ2(
A
1| x) = (x − α

(2)
0 )Ĥ1(

A
1| x) + a

−1
0 a2Ĥ0(

A
1| x),

Ĥn+2(
A
1| x) = (x − α

(2)
n )Ĥn+1(

A
1| x) − λ

(2)
n Ĥn(

A
1| x), n � 1,

(4.15)

If the linear functional x2U is quasi-definite then a2 = (x2U )0 �= 0. Thus, (Ĥn(
A
1| x))n�0 is a SMOP.

On the other hand, if we assume that the linear functionals xνU , ν = 1, 2 , are quasi-definite,

another expression of the Hankel determinant Ĥn(
A
1| x) in terms of the polynomials Ĥn(A | x) can be

evaluated.

In this case, the corresponding SMOP (Q̂n(x, A
(ν)))n�0, ν = 1, 2, satisfies the following connection

relation (see [9])

xQ̂n(x, A
(2)) = Q̂n+1(x, A

(1)) − Q̂n+1(0, A
(1))

Q̂n(0, A(1))
Q̂n(x, A

(1)), n � 0. (4.16)

From (2.8) with r = 1 and (3.16), we get

Ĥn+1(
A
1| x) = a

−1
0 U xQ̂n(x; A(2))

= a
−1
0 U Q̂n+1(x; A(1)) − Q̂n+1(0, A

(1))

Q̂n(0, A(1))
a
−1
0 U Q̂n(x; A(1)), n � 1,

and, again, from (2.8) with r = 0, we deduce

Ĥn+1(
A
1| x) = Ĥn+1(A | x) − Q̂n+1(0, A

(1))

Q̂n(0, A(1))
Ĥn(A | x), n � 1. (4.17)

As a consequence of Corollary 2, (2.8), and (3.17), we get

Corollary 3. Let A = (an)n�0 be a sequence of complex numbers and letU ∈ P
′ be such that (U )n = an,

n � 0. Suppose that a0 �= 0, and xr+1U , r = 0, 1, are quasi-definite linear functionals. Then, we have

det

⎡
⎣l+k+1∑

ν=0

al+k+1−νx
ν

⎤
⎦n

l,k=0

= ϑn

(
Ĥn+1(A | x) + ξnĤn(A | x)), n � 1,

where

ϑn = (−1)na0 det[al+k+2]n−1
l,k=0, ξn = − Q̂n+1(0, A

(1))

Q̂n(0, A(1))
,

Ĥn(A | x) = Q̂n(x, A
(1)) + a1a

−1
0 Q̂

(1)
n−1(x, A

(1)),

and {Q̂n(x, A
(1))}n�0 is the SMOP with respect to xU .

From Corollary 3, with A = C, and using (3.11) and (3.14), we next evaluate

det
[∑l+k+1

ν=0
1

l+k+2−ν

(
2(l+k+1−ν)
l+k+1−ν

)
xν
]n
l,k=0.

Indeed, from (3.7)with x = 0 and using induction, it is easy to show that Q̂n(0, C
(1)) = (−1)n(n+

1), n � 0. As a consequence, ξn = n+2
n+1

, n � 0.On the other hand, let us remind that det[Cl+k+2]n−1
l,k=0
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= n + 1, n � 1, (see [4]). Therefore, taking into account (3.11) ,

det

⎡
⎣l+k+1∑

ν=0

Cl+k+1−νx
ν

⎤
⎦n

l,k=0

= (−2)n(n + 1)

[
2Ĵn+1

(
x − 2

2
; −1

2
,
1

2

)

+ n + 2

n + 1
Ĵn

(
x − 2

2
; −1

2
,
1

2

)]
, n � 1. (4.18)

Substituting (3.14) into (3.18), we get

det

⎡
⎣l+k+1∑

ν=0

Cl+k+1−νx
ν

⎤
⎦n

l,k=0

=

(n + 2) cos

((
n + 1

2

)
z

)
− (n + 1) cos

((
n + 3

2

)
z

)

cos

(
z

2

) , n � 1, (4.19)

where x = 2(1 − cos(z)).

Next, we evaluate det
[∑l+k+1

ν=0 Cl+k+1−νx
ν
]n
l,k=0 at the same values of x as above.

• For x = 0 and z = 0 in (3.19), we get

det
[
Cl+k+1

]n
l,k=0 = 1.

• For x = 1 and z = π
3
in (3.19),

det

⎡
⎣l+k+1∑

ν=0

Cl+k+1−ν

⎤
⎦n

l,k=0

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n + 2, if n ≡ 0 (mod 6)

n + 1, if n ≡ 1 (mod 6)

−1, if n ≡ 2 (mod 6)

−(n + 2), if n ≡ 3 (mod 6)

−(n + 1), if n ≡ 4 (mod 6)

1, if n ≡ 5 (mod 6).

• For x = 2 and z = π
2
in (3.19),

det

⎡
⎣l+k+1∑

ν=0

Cl+k+1−ν2
ν

⎤
⎦n

l,k=0

= (−1)
n(n+1)

2
[
n + 2 + (−1)n(n + 1)

]
.

• For x = 3 and z = 2π
3

in (3.19),

det

⎡
⎣l+k+1∑

ν=0

Cl+k+1−ν3
ν

⎤
⎦n

l,k=0

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3n + 4, if n ≡ 0 (mod 3)

−3n − 5, if n ≡ 1 (mod 3)

1, if n ≡ 2 (mod 3).

• For x = 4 and z = π in (3.19),

det

⎡
⎣l+k+1∑

ν=0

Cl+k+1−ν4
ν

⎤
⎦n

l,k=0

= (−1)n(4n2 + 10n + 5).
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Since
∑n+1

ν=0 Cn+1−ν4
ν = 22n+3 −

(
2n+3

n+2

)
, n � 0, then

det

[
22(l+k)+3 −

(
2(l + k) + 3

l + k + 2

)]n
l,k=0

= (−1)n(4n2 + 10n + 5).

• For x = 2 − √
2 and z = π

4
in (3.19),

det

⎡
⎣l+k+1∑

ν=0

Cl+k+1−ν(2 − √
2)ν

⎤
⎦n

l,k=0

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n(2 − √
2) + 3 − √

2, if n ≡ 0 (mod 8)

(
√

2 − 1)(2n + 3), if n ≡ 1 (mod 8)

(2 − √
2)n + 3 − 2

√
2, if n ≡ 2 (mod 8)

−1, if n ≡ 3 (mod 8)

−n
√

2 − 1 − √
2, if n ≡ 4 (mod 8)

(1 − √
2)(2n + 3), if n ≡ 5 (mod 8)

(
√

2 − 2)n + 2
√

2 − 3, if n ≡ 6 (mod 8)

1, if n ≡ 7 (mod 8).
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