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Abstract

Sieved orthogonal polynomials on the unit circle were introduced independently by Ismail
and Li [14] and Marcellán and Sansigre [17]. We look at the para-orthogonal polynomials,
chain sequences and quadrature formulas that follow from the kernel polynomials of sieved
orthogonal polynomials on the unit circle.
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1 Introduction

Given a nontrivial positive measure µ(ζ) = µ(eiθ) supported on the unit circle C = {ζ = eiθ: 0 ≤
θ ≤ 2π}, it is well known that the associated sequence of monic OPUC (Orthogonal Polynomials
on the Unit Circle) {Sn(z)}∞n=0 can be defined by∫

C
ζ̄jSn(ζ)dµ(ζ) =

∫ 2π

0
e−ijθSn(eiθ)dµ(eiθ) = 0, 0 ≤ j ≤ n− 1, n ≥ 1.

Letting κ−2n = ‖Sn‖2 =
∫
C |Sn(ζ)|2dµ(ζ), the orthonormal polynomials on the unit circle are

sn(z) = κnSn(z), n ≥ 0.
OPUC were introduced by Gábor Szegő in the first half of the 20th century (see the mono-

graph [26]). Thus, they are also referred to as Szegő polynomials. These polynomials, which
have received a lot of attention in recent years (see, for example, [1, 4, 8, 7, 16, 19, 20, 21, 25, 27]),
have applications in quadrature rules, signal processing, operator and spectral theory and many
other topics.

Chapter 8 of Ismail’s recent book [13] on these polynomials and the two recent volumes
[22] and [23] by Barry Simon, specifically under the title “Orthogonal Polynomials on the Unit
Circle”, have provided us with many useful tools for further research in this area.

∗The first author has been supported by Dirección general de Poĺıtica Cient́ıfica y Tecnológica, Ministerio de
Economı́a y Competitividad of Spain, grant MTM2012-36732-C03-01 as well as by CAPES, Brazil. The second
author’s work was support by funds from CAPES, CNPq and FAPESP of Brazil.
†ranga@ibilce.unesp.br (corresponding author)



The monic OPUC satisfy the so called forward and backward recurrence relations, respec-
tively,

Sn(z) = zSn−1(z)− αn−1 S∗n−1(z),

Sn(z) = (1− |αn−1|2)zSn−1(z)− αn−1S∗n(z),
n ≥ 1, (1.1)

where αn−1 = −Sn(0) and S∗n(z) = znSn(1/z̄) denotes the reversed (reciprocal) polynomial of
Sn(z). Following Simon [22], we refer to the numbers αn as Verblunsky coefficients. It is known
that these coefficients are such that |αn| < 1, n ≥ 0, as well as that OPUC and the associated
measure are completely characterized by the Verblunsky coefficients {αn}∞n=0 as stated by the
following theorem.

Theorem A. Given an arbitrary sequence of complex numbers {αn}∞n=0, where |αn| < 1, n ≥ 0,
then associated with this sequence there exists a unique nontrivial probability measure µ on the
unit circle such that the polynomials {Sn(z)}∞n=0 generated by (1.1) are the respective OPUC.

Here, µ is a nontrivial positive measure if its support is infinite and it is a nontrivial prob-
ability measure if µ0 =

∫
C dµ(ζ) = 1. The above theorem, known as Favard’s theorem for the

unit circle, has been referred to as Verblunsky’s theorem in Simon [22].
Given the sequence of Verblunsky coefficients {αn}∞n=0 let µ be the associated nontrivial

probability measure and let {Sn(z)}∞n=0 be the corresponding OPUC. For a positive integer `

the sieved OPUC {S(`)
n (z)}∞n=0 are defined as those orthogonal polynomials associated with the

Verblunsky coefficients {α(`)
n }∞n=0 given by

α(`)
n =

{
0, if (n+ 1) 6= 0 mod `,
αbn/`c, if (n+ 1) = 0 mod ` ,

(1.2)

for n ≥ 0. We also denote by µ(`) the nontrivial probability measure on the unit circle associated

with {α(`)
n }∞n=0.

Note that {S(1)
n (z)}∞n=0 are the polynomials {Sn(z)}∞n=0. The earliest treatment of the sieved

orthogonal polynomials {S(`)
n (z)}∞n=0 for ` ≥ 2 is found in Ismail and Li [14]. However, the

sieved orthogonal polynomials {S(2)
n (z)}∞n=0 have been studied earlier than [14] by Marcellán

and Sansigre (see [17] and [18]). The following results, established in [14], will be the basic
requirement for the results obtained in the present manuscript.

S
(`)
r`+j(z) = zjSr(z

`), j = 0, 1, . . . , `− 1, r ≥ 0, (1.3)

and
dµ(`)(eiθ) = `−1dµ(ei`θ), 0 ≤ θ ≤ 2π.

For the reversed polynomials S
(`)∗
n (z) there hold

S
(`)∗
r`+j(z) = zr`+jS

(`)
r`+j(1/z̄) = (z`)r Sr(1/z̄`) = S∗r (z`), j = 0, 1, . . . , `− 1, r ≥ 0. (1.4)

The aim of the present manuscript is to explore the connection between para-orthogonal
polynomials, chain sequences and quadrature formulas that follow from the kernel polynomials of
the sieved OPUC. The structure of the manuscript is as follows. In Section 2 we present a basic
background concerning para-orthogonal polynomials associated with a nontrivial probability
measure on the unit circle, the three term recurrence relation they satisfy, the representation
of the coefficients of such a recurrence relation as chain sequences and the role of zeros of
para-orthogonal polynomials in Gaussian quadrature rules on the unit circle. In Section 3, we
consider para-orthogonal polynomials associated with the sieved measure on the unit circle.
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Then we obtain its corresponding three term recurrence relation as well as the chain sequences
for the coefficients of such a recurrence relation. Finally, in Section 4 we deal with the Gaussian
quadrature rules for such sieved para-orthogonal polynomials. The nodes and the corresponding
weights are deduced.

2 Para-orthogonal polynomials from kernel polynomials

Recall that the Christoffel-Darboux formula of order n associated with the sequence {Sn(z)}∞n=0

of OPUC is such that

Kn(z, w) =
n∑
j=0

sj(w) sj(z) =
s∗n+1(w) s∗n+1(z)− sn+1(w) sn+1(z)

1− w̄ z
.

Here, sn(z) = κnSn(z) are the normalized OPUC. See, for example [22, Thm. 2.2.7], where
Kn(z, w) is referred to as a CD kernel, meaning a Christoffel-Darboux kernel.

With |w| = 1, we consider the sequence {Pn(w; z)}∞n=0 of polynomials in z given by

Pn(w; z) =
κ−2n+1w

Sn+1(w)

Kn(z, w)

1 + τn+1(w)αn
, n ≥ 0,

where τn = Sn(w)/S∗n(w), n ≥ 0. It is easily verified that Pn(w; z) is a monic polynomial of
degree n in z, which can be simply written as

Pn(w; z) =
1

z − w
Sn+1(z)− τn+1(w)S∗n+1(z)

1 + τn+1(w)αn
=

1

z − w
[zSn(z)− τn(w)S∗n(z)], n ≥ 0. (2.1)

Since |w| = 1 we have |τn(w)| = 1 for n ≥ 0. Hence, Sn+1(z)− τn+1(w)S∗n+1(z) is known as
a para-orthogonal polynomial associated with Sn+1. From known properties of para-orthogonal
polynomials (see [15]), Sn+1(z)−τn+1(w)S∗n+1(z) has n+1 simple zeros on the unit circle |z| = 1.
In particular, w is one of the zeros of Sn+1(z)− τn+1(w)S∗n+1(z). Consequently, the polynomial
Pn(w; z) has all its n zeros simple and lying on the unit circle |z| = 1. However, none of the
zeros of Pn(w; z) can be equal to the value w.

Perhaps the first reference that explicitly brings the connection between CD kernels and
para-orthogonal polynomials is González-Vera, Santos-León and Nj̊astad [11] (see also [2, Thm.
2.1]). Such results in a setting based on linear algebra and also without the use of the name para-
orthogonal appear, even earlier than [11], in Gragg [12]. However, the name para-orthogonal
polynomials for Sn(z) − τnS∗n(z), where |τn| = 1 and Sn are OPUC, is due to Jones, Nj̊astad
and Thron [15]. We may refer to the polynomials (z − w)Pn(w; z) as the CD kernel POPUC.

More on studies that use the connection between CD kernels and para-orthogonal polyno-
mials we refer to [3], [10] and [28]. We also cite [24], where there is a nice section on CD kernels
and para-orthogonal polynomials.

Some of the results shown recently in [7] that are relevant for the present manuscript can be
summarized as follows.

For the (special and appropriately scaled) CD kernel POPUC (z − 1)Pn(1; z), given by

Rn(z) = σn
zSn(z)− τnS∗n(z)

z − 1
, n ≥ 0, (2.2)

where

τ0 =
S0(1)

S∗0(1)
= 1 and τn =

Sn(1)

S∗n(1)
=

τn−1 − αn−1
1− τn−1αn−1

, n ≥ 1,

σ0 = 1 and σn =
1− τn−1αn−1

1−Re(τn−1αn−1)
σn−1, n ≥ 1,
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the following three term recurrence formula holds.

Rn+1(z) =
[
(1 + icn+1)z + (1− icn+1)

]
Rn(z)− 4 dn+1zRn−1(z), n ≥ 1, (2.3)

with R0(z) = 1 and R1(z) = (1 + ic1)z + (1 − ic1), where the real sequences {cn}∞n=1 and
{dn+1}∞n=1 are such that

cn =
−Im(τn−1αn−1)

1−Re(τn−1αn−1)
= i

τn − τn−1
τn + τn−1

,

dn+1 =
1

4

[
1− |τn−1αn−1|2

] ∣∣1− τn αn∣∣2[
1−Re(τn−1αn−1)

][
1−Re(τnαn)

] , n ≥ 1. (2.4)

Moreover, {dn+1}∞n=1, where dn+1 = (1 −mn)mn+1, is a positive chain sequence with the pa-
rameter sequence {mn+1}∞n=0 given by

mn+1 =
1

2

∣∣1− τnαn∣∣2[
1−Re(τnαn)

] , n ≥ 0.

Since 0 < m1 < 1, setting

d1 = m1 =
1

2

∣∣1− τ0α0

∣∣2[
1−Re(τ0α0)

] , (2.5)

then {mn}∞n=0, with m0 = 0, is the minimal parameter sequence of the positive chain sequence
{dn}∞n=1. The sequence {mn}∞n=0, together with the sequence {cn}∞n=1, can be used to charac-
terize the above measure µ. For example, the associated monic OPUC {Sn(z)}∞n=0 can be given
as

Sn(z)

n∏
k=1

(1 + ick) = Rn(z)− 2(1−mn)Rn−1(z), n ≥ 1,

and that the corresponding Verblunsky coefficients can be derived from

τn =
1− icn
1 + icn

τn−1 and αn−1 =
1

τn

1− 2mn − icn
1 + icn

, n ≥ 1,

with τ0 = 1. Moreover, if the maximal parameter sequence {Mn}∞n=0 of the positive chain
sequence {dn}∞n=1 is different from its minimal parameter sequence {mn}∞n=0, then the measure
µ has a positive mass (pure point) of size M0 at z = 1.

Observe from (2.2) that σn =
∏n
k=1(1 + ick), n ≥ 1, and that σn/σn = 1/τn, n ≥ 1. Thus,

we can also write
σnSn(z) = Rn(z)− 2(1−mn)Rn−1(z),

τnσnS
∗
n(z) = Rn(z)− 2(1−mn)zRn−1(z),

n ≥ 1. (2.6)

With respect to the measure µ the polynomials Rn also satisfy the following so called L-
orthogonality property∫

C
ζ−n+jRn(ζ) (1− ζ)dµ(ζ) = 0, 0 ≤ j ≤ n− 1.

If we also consider the polynomials Qn(z), n ≥ 0, given by

Qn+1(z) =
[
(1 + icn+1)z + (1− icn+1)

]
Qn(z)− 4 dn+1zQn−1(z), n ≥ 1, (2.7)

with Q0(z) = 0 and Q1(z) = 2d1, where {cn}∞n=1 and {dn}∞n=1 are as in (2.3) and (2.5), then we
can state the following lemma.
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Lemma 2.1

Rn(1)− 2(1−mn)Rn−1(1) = Qn(1)− 2(1−mn)Qn−1(1) = 2nm1m2 · · ·mn, n ≥ 1.

Proof. Easily verified from the three term recurrence relations for Rn and Qn.

Gaussian type quadrature rules on the unit circle are based on the zeros of POPUC. We can
derive information about the Gaussian type quadrature rule based on the zeros of (z − 1)Rn(z)
from the following results given very recently in [5].

We get

Rn(z)−Qn(z)

(z − 1)Rn(z)
=

λn,0
z − 1

+

n∑
k=1

λn,k
z − zn,k

, n ≥ 1,

where zn,k, k = 1, 2, . . . , n, are the zeros of Rn(z) and the quantities λn,k, k = 0, 1, . . . , n, shown
in [5] to be positive, satisfy

λn,0 = 1− Qn(1)

Rn(1)
and λn,k =

Qn(zn,k)

(1− zn,k)R′n(zn,k)
, k = 1, 2, . . . , n. (2.8)

Moreover,

−
∞∑
k=0

µk+1z
k − Rn(z)−Qn(z)

(z − 1)Rn(z)
= O

(
zn
)
, n ≥ 1,

and
∞∑
k=0

µ−kz
−k−1 − Rn(z)−Qn(z)

(z − 1)Rn(z)
= O

(
(1/z)n+2

)
, n ≥ 1,

where µk =
∫
C ζ
−kdµ(ζ), k = 0,±1,±2, . . . .

Thus, by the same idea used by Gauss to discover the Gaussian Quadrature formulas, we
obtain the following.

Theorem 2.2 Let zn,k = eiθn,k , k = 1, 2, . . . , n, be the zeros of Rn and let zn,0 = 1. Then the
following quadrature formula holds.∫

C
ζpdµ(ζ) =

n∑
k=0

λn,k(zn,k)
p, p = 0,±1, . . . ,±n, (2.9)

where the weights λn,k, k = 0, 1, . . . , n, are all positive and can be given in terms of {Rn}∞n=0

and {dn}∞n=1 by

λn,0 =
(1−mn)22nd1d2 · · · dn

Rn(1)
[
Rn(1)− 2(1−mn)Rn−1(1)

] ,
λn,k =

22n−1d1d2 · · · dnzn−1n,k

(1− zn,k)R′n(zn,k)Rn−1(zn,k)
, k = 1, 2, . . . n.

(2.10)

Proof. From the recurrence formulas for {Rn(z)}∞n=0 and {Qn(z)}∞n=0 together with the theory
of continued fractions

Qn(1)

Rn(1)
=

d1
1
− d2

1
− d3

1
− · · · − dn

1
,

= (1−m0)
m1

1
− (1−m1)m2

1
− · · · − (1−mn−1)mn

1
,
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for n ≥ 1, where {mn}∞n=0 is the minimal parameter sequence of the positive chain sequence
{dn}∞n=1. Hence, one can write (see the proof of Lemma 3.2 in [6, p. 83])

λn,0 = 1− Qn(1)

Rn(1)
=

1

1 +
n∑
k=1

m1m2 · · ·mk

(1−m1)(1−m2) · · · (1−mk)

, n ≥ 1,
(2.11)

which shows the positiveness of λn,0. The expression for λn,0 in the theorem, which we use in a
latter part of this manuscript, can be obtained as follows.

From Lemma 2.1,

1− Qn(1)

Rn(1)
=
Qn(1)− 2(1−mn)Qn−1(1)

Rn(1)− 2(1−mn)Rn−1(1)
− Qn(1)

Rn(1)

=
(1−mn)

[
Qn(1)Rn−1(1)−Qn−1(1)Rn(1)

][
Rn(1)− 2(1−mn)Rn−1(1)

]
Rn(1)

,

from which using the determinant formulas

Qn(z)Rn−1(z)−Qn−1(z)Rn(z) = 22n−1d1d2 · · · dnzn−1, n ≥ 1,

the required value for λn,0 follows.
Now for the expressions concerning the coefficients λn,k, k ≥ 1, we first write (2.8) as

λn,k =
Qn(zn,k)Rn−1(zn,k)−Qn−1(zn,k)Rn(zn,k)

(1− zn,k)R′n(zn,k)Rn−1(zn,k)
.

Thus, the determinant formula gives the required expressions for the coefficients λn,k. The
positiveness of λn,k has been shown in [5] using the expression

λn,k =
Qn(zn,k)Rn−1(zn,k)−Qn−1(zn,k)Rn(zn,k)

(1− zn,k)[R′n(zn,k)Rn−1(zn,k)−R′n−1(zn,k)Rn(zn,k)]
.

This completes the proof of the Theorem.

3 Sieved para-orthogonal polynomials

With ` ≥ 2, we consider the CD kernel POPUC (z−1)R
(`)
n (z) associated with the sieved OPUC

{S(`)
n (z)}∞n=0 given in section 1. We have

R(`)
n (z) = σ(`)n

zS
(`)
n (z)− τ (`)n S

(`)∗
n (z)

z − 1
, n ≥ 1,

where

τ
(`)
0 =

S
(`)
0 (1)

S
(`)∗
0 (1)

= 1 and τ (`)n =
S
(`)
n (1)

S
(`)∗
n (1)

=
τ
(`)
n−1 − α

(`)
n−1

1− τ (`)n−1α
(`)
n−1

, n ≥ 1,

σ
(`)
0 = 1 and σ(`)n =

1− τ (`)n−1α
(`)
n−1

1−Re(τ (`)n−1α
(`)
n−1)

σ
(`)
n−1, n ≥ 1,

(3.1)

As in (2.3), the polynomials {R(`)
n }∞n=0 satisfy the recurrence formulas

R
(`)
n+1(z) =

[
(1 + ic

(`)
n+1)z + (1− ic(`)n+1)

]
R(`)
n (z)− 4 d

(`)
n+1zR

(`)
n−1(z), n ≥ 1, (3.2)
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with R
(`)
0 (z) = 1 and R

(`)
1 (z) = (1 + ic

(`)
1 )z + (1− ic(`)1 ), where the real sequences {c(`)n }∞n=1 and

{d(`)n+1}∞n=1 are such that

c(`)n =
−Im(τ

(`)
n−1α

(`)
n−1)

1−Re(τ (`)n−1α
(`)
n−1)

= i
τ
(`)
n − τ (`)n−1

τ
(`)
n + τ

(`)
n−1

,

d
(`)
n+1 =

1

4

[
1− |τ (`)n−1α

(`)
n−1|2

] ∣∣1− τ (`)n α
(`)
n

∣∣2[
1−Re(τ (`)n−1α

(`)
n−1)

][
1−Re(τ (`)n α

(`)
n )
] ,
n ≥ 1. (3.3)

Moreover, {d(`)n+1}∞n=1, where d
(`)
n+1 = (1 − m

(`)
n )m

(`)
n+1, is a positive chain sequence with the

parameter sequence {m(`)
n+1}∞n=0 given by

m
(`)
n+1 =

1

2

∣∣1− τ (`)n α
(`)
n

∣∣2[
1−Re(τ (`)n α

(`)
n )
] , n ≥ 0.

Setting d
(`)
1 = m

(`)
1 , we can also say that {m(`)

n }∞n=0, with m
(`)
0 = 0, is the minimal parameter

sequence of the positive chain sequence {d(`)n }∞n=1 and that if {M (`)
n }∞n=0 is the maximal parameter

sequence of {d(`)n }∞n=1, then M
(`)
0 (if M

(`)
0 > 0) is the mass size of the pure point at z = 1 in the

measure µ(`).
From (1.2), since

α
(`)
r`+j = 0, 0 ≤ j ≤ `− 2, and α

(`)
r`+`−1 = αr,

for r ≥ 0, from (3.1) we have

τ
(`)
r`+j = τr, 0 ≤ j ≤ `− 1, r ≥ 0.

Thus, from (2.2) and (3.1),

σ
(`)
r`+j = σr, 0 ≤ j ≤ `− 1, r ≥ 0.

Moreover, from (2.4) and (3.3),

m
(`)
r`+j+1 = 1

2 , 0 ≤ j ≤ `− 2, and m
(`)
r`+` = mr+1,

c
(`)
r`+j+1 = 0, 0 ≤ j ≤ `− 2, and c

(`)
r`+` = cr+1,

d
(`)
r`+1 = 1

2(1−mr), d
(`)
r`+j+1 = 1

4 , 1 ≤ j ≤ `− 2, and d
(`)
r`+` = 1

2mr+1,

for r ≥ 0.
Using these results together with dµ(`)(z) = `−1dµ(z`), we can state the following theorem.

Theorem 3.1 Let {dn}∞n=1 be a positive chain sequence with the minimal parameter sequence

{mn}∞n=0 and the maximal parameter sequence {Mn}∞n=0. For ` ≥ 2, set {d(`)n }∞n=1 to be the
positive chain sequence with its minimal parameter sequence given by

m
(`)
r`+j+1 =

1

2
, 0 ≤ j ≤ `− 2, and m

(`)
(r+1)` = mr+1 for r ≥ 0.

If g0 = `−1M0 and gn = d
(`)
n /(1 − gn−1), n ≥ 1, then {gn}∞n=0 = {M (`)

n }∞n=0 is the maximal

parameter sequence of {d(`)n }∞n=1.
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Since

R
(`)
r`+j(z) = σ

(`)
r`+j

zS
(`)
r`+j(z)− τ

(`)
r`+jS

(`)∗
r`+j(z)

z − 1
, 0 ≤ j ≤ `− 1, r ≥ 0,

we obtain from (1.3), (1.4) that

R
(`)
r`+j(z) = σr

zj+1Sr(z
`)− τrS∗r (z`)

z − 1
, 0 ≤ j ≤ `− 1, r ≥ 0. (3.4)

With the above results we can state the following.

Theorem 3.2 Let the real sequences {cn}∞n=1 and {dn}∞n=1 be such that {dn}∞n=1 is also a positive
chain sequence with its minimal parameter sequence denoted by {mn}∞n=0. Let the polynomials
{Rn(z)}∞n=0 be given by the three term recurrence formula

Rn+1(z) =
[
(1 + icn+1)z + (1− icn+1)

]
Rn(z)− 4 dn+1zRn−1(z), n ≥ 1,

with R0(z) = 1 and R1(z) = (1 + ic1)z+ (1− ic1). Then for any r ≥ 1, ` ≥ 1 and 0 ≤ j ≤ `− 1,

the polynomial R
(`)
r`+j(z), of degree r`+ j, given by

R
(`)
r`+j(z) =

zj+1 − 1

z − 1
Rr(z

`) + 2(1−mr)
z` − zj+1

z − 1
Rr−1(z

`), (3.5)

has r` + j simple zeros on the unit circle |z| = 1 with z 6= 1. Moreover, if N = n + 1, then

between any two zeros of R
(`)
N (on the unit circle) there is a zero of R

(`)
n .

Proof. The expression for R
(`)
r`+j(z) is immediate taking into account (2.6) in (3.4). Properties

of the zeros of these polynomials follow from the three term recurrence formula (3.2) and results
given in [9].

Note that for ` = 1 then the polynomials R
(`)
n (z) become the polynomials Rn(z). For ` ≥ 2,

considering only the polynomials R
(`)
r`+`−1 we have

R
(`)
`−1(z) =

z`S0(z
`)− τ0S∗0(z`)

z − 1
=
z` − 1

z − 1
,

R
(`)
r`−1(z) =

∏r−2
j=0

[
1− τjαj

]∏r−2
j=0

[
1−Re(τjαj)

] z`Sr−1(z`)− τr−1S∗r−1(z`)
z − 1

=
z` − 1

z − 1
Rr−1(z

`), r ≥ 2.

(3.6)
Thus, we also have the following three term recurrence formula

R
(`)
(r+2)`−1(z) =

[
(1 + icr+1)z

` + (1− icr+1)
]
R

(`)
(r+1)`−1(z)− 4 dr+1z

`R
(`)
r`−1(z), r ≥ 1,

with

R
(`)
`−1(z) =

z` − 1

z − 1
and R

(`)
2`−1(z) =

z` − 1

z − 1

[
(1 + ic1)z

` + (1− ic1)
]
.

4 Some remarks on sieved Gaussian quadrature

As given by Theorem 2.2, the quadrature rules based on the zeros of the sieved para-orthogonal

polynomials (z − 1)R
(`)
n (z) are∫
C
ζpdµ(`)(ζ) =

n∑
m=0

λ(`)n,m (z(`)n,m)p, p = 0,±1, . . . ,±n, (4.1)
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where z
(`)
n,0 = 1, z

(`)
n,m, m = 1, 2, . . . , n, are the zeros of R

(`)
n (z), and the positive weights λ

(`)
n,m,

m = 0, 1, . . . , n, can be given by

λ
(`)
n,0 =

(1−m(`)
n )22nd

(`)
1 d

(`)
2 · · · d

(`)
n

R
(`)
n (1)[R

(`)
n (1)− 2(1−m(`)

n )R
(`)
n−1(1)]

,

λ(`)n,m =
22n−1d

(`)
1 d

(`)
2 · · · d

(`)
n (z

(`)
n,m)n−1

(1− z(`)n,m)R
(`)′
n (z

(`)
n,m)R

(`)
n−1(z

(`)
n,m)

, m = 1, 2, . . . , n.

(4.2)

However, we can say a bit more about the Gaussian quadrature formula based on the zeros

of (z − 1)R
(`)
r`+`−1(z), r ≥ 1. We write this quadrature formula in the form∫

C
ζpdµ(`)(ζ) =

r∑
k=0

`−1∑
j=0

ρr,k,j(wr,k,j)
p,

where wr,0,0 = z
(`)
r`+`−1, 0 = 1 and the remaining wr,k,j = z

(`)
r`+`−1, k`+j are the zeros of R

(`)
r`+`−1(z)

and ρr,k,j = λ
(`)
r`+`−1, k`+j , j = 0, 1, . . . , `− 1, k = 0, 1, . . . , r.

Theorem 4.1 The nodes wr,k,j and the weights ρr,k,j of the quadrature formula based on the

zeros of the polynomial (z − 1)R
(`)
r`+`−1(z) are such that

wr,0,j = ei2πj/`, j = 0, 1, . . . , `− 1,

wr,k,j = ei(θr,k+2πj)/`, j = 0, 1, . . . , `− 1, k = 1, 2, . . . , r,

and

ρr,k,j =
1

`
λr,k, j = 0, 1, . . . , `− 1, k = 0, 1, . . . , r.

Proof. The formulas for the nodes simply follow from (3.6). The results for weights can
be verified in two different ways. The first one is the direct substitution of the zeros in the
expressions given by (4.2). For example, using information such as (wr,0,j)

` = 1 and (wr,k,j)
` =

zr,k, we have

d
(`)
1 · · · d

(`)
`−1d

(`)
` d

(`)
`+1 · · · d(r−1)`+`−1dr`dr`+1 · · · d

(`)
r`+`−1

= 1
2(1−m0) · · · 14

1
2m1

1
2(1−m1) · · · 14

1
2mr

1
2(1−mr) · · · 14 ,

=
2

4(r+1)`−1−r (1−mr)d1d2 · · · dr,

(1− wr,0,j)R(`)′
r`+`−1(wr,0,j) = −` (wr,0,j)

`−1Rr(1),

(1− wr,k,j)R
(`)′
r`+`−1(wr,k,j) = ` (1− zr,k)(wr,k,j)`−1R′r(zr,k).

and
R

(`)
r`+`−2(wr,0,j) = −(wr,0,j)

−1[Rr(1)− 2(1−mr)Rr−1(1)
]
,

R
(`)
r`+`−2(wr,k,j) = 2(1−mr)(wr,k,j)

`−1Rr−1(zr,k).

Thus the relations ρr,k,j = `−1 λr,k follow from (2.10) and (4.2).
The other way to verify these results is to obtain the new quadrature formula (4.1) directly

from the quadrature formula (2.9). Since (wr,k,j)
` = zr,k, we have from (2.10), with n = r,∫ 2π(j+1)/`

2πj/`
(ei`θ)pdµ(ei`θ) =

r∑
k=0

λr,k(wr,k,j)
`p, p = 0,±1, . . . ,±r,
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for j = 0, 1, . . . , `− 1. Hence,∫ 2π

0
(ei`θ)pdµ(ei`θ) =

`−1∑
j=0

r∑
k=0

λr,k(wr,k,j)
`p, p = 0,±1, . . . ,±r,

As a consequence, we can write∫ 2π

0
(eiθ)`pdµ(`)(eiθ) =

r∑
k=0

[
`−1λr,k

`−1∑
j=0

(wr,k,j)
`p
]
, p = 0,±1, . . . ,±r.

Note that the weights and nodes are exactly what we wanted. Only thing we still need to verify
is the validity of the above quadrature rule for the powers `p+ q, q = 1, 2, . . . , `− 1.

The left hand side can be written as∫ 2π

0
(eiθ)`p+qdµ(`)(eiθ) =

`−1∑
j=0

∫ 2π/`

0
(eiθ+i2πj/`)`p+qdµ(`)(eiθ)

=

∫ 2π/`

0
(eiθ)`p+q

[ `−1∑
j=0

(ei2πj/`)q
]
dµ(`)(eiθ).

For q = 1, 2, . . . , `− 1, since the sum within the integral is zero the resulting integral is zero.
Since wr,k,j are the `th roots of zr,k, it follows that

`−1∑
j=0

(wr,k,j)
`p+q =

`−1∑
j=0

ei(θr,k+2πj)(`p+q)/` = 0, q = 1, 2, . . . , `− 1.

So the right hand side is also zero for such powers.
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