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Abstract In this contribution, we analyze a perturbation of a nontrivial probability
measure dµ supported on an infinite subset on the real line, which consists on the
addition of a time dependent mass point. For the associated sequence of monic or-
thogonal polynomials, we study its dynamics with respect to the time parameter. In
particular, we determine the time evolution of their zeros in the special case when
the measure is semiclassical. We also study the dynamics of the Verblunsky coeffi-
cients, i.e. the recurrence relation coefficients of a polynomial sequence, orthogonal
with respect to a nontrivial probability measure supported on the unit circle, induced
from dµ through the Szegő transformation.

1 Introduction

Let consider the classical mechanical problem of a 1-dimensional chain of particles
with neighbor interactions. Assume that the system is homogeneous (contains no
impurities) and that the mass of each particle is m. We denote by yn the displacement
of the n-th particle, and by ϕ(yn+1−yn) the interaction potential between neighboring
particles. We can consider this system as a chain of infinitely many particles joined
together with non-linear springs. Therefore, if

F(r) = −ϕ′(r)
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is the force of the spring when it is stretched by the amount r, and rn = yn+1 − yn
is the mutual displacement. Then, according to the Newton’s law, the equation that
governs the evolution is

mÿn = ϕ′(yn+1− yn)−ϕ′(yn− yn−1),

where, as usual, ẏ denotes the derivative with respect to the time. If F(r) is propor-
tional to r, that is, when F(r) obeys the Hooke’s law, the spring is linear and the
potential can be written as ϕ(r) =

κ

2
r2. Thus, the equation of motion is

mÿn = κ(yn−1−2yn + yn+1),

and the solutions y(l)
n , l ∈N, are given by a linear superposition of the normal modes.

In particular, when the particles located at y0 and yN+1 are fixed,

y(l)
n = Cn sin

(
πl

N + 1

)
cos(ωlt +δl) , l = 1,2, . . . ,N,

where ωl = 2
√
κ/msin(πl/(2N +2)), the amplitude Cn of each mode is a constant de-

termined by the initial conditions. In this case there is no transfer of energy between
the modes. Therefore, the linear lattice is non-ergodic, and cannot be an object of
statistical mechanics unless some modification is made. In the early 1950s, the gen-
eral belief was that if a non-linearity is introduced in the model, then the energy
flows between the different modes, eventually leading to a stable state of statistical
equilibrium [5]. This phenomenon was explained by the connection to solitons 1.

There are non-linear lattices which admit periodic behavior at least when the
energy is not too high. Lattices with exponential interaction have the desired prop-
erties. The Toda lattice [18] is given by setting

ϕ(r) = e−r + r−1.

Flaschka [6] (see also [15, 14]) proved the complete integrability for the Toda lattice
by recasting it as a Lax equation for Jacobi matrices. Later, Van Moerbeke [19], fol-
lowing a similar work [13] on Hill’s equation [10], used the Jacobi matrices to define
the Toda hierarchy for the periodic Toda lattices, and to find the corresponding Lax
pairs.

Flaschka’s change of variable is given by

an =
1
2

e−(yn+1−yn)/2, bn =
1
2

ẏn.

Hence the new variables obey the evolution equations

1 In mathematics and physics, a soliton is a self-reinforcing solitary wave (a wave packet or pulse)
that maintains its shape while it travels at constant speed. Solitons are caused by a cancellation of
non-linear and dispersive effects in the medium.
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ȧn = an(bn+1−bn), (1)
ḃn = 2(a2

n−a2
n−1), a−1 = 0, n > 0, (2)

with initial data b0
n = bn(0) = bn(0), a0

n = an(0) > 0, which we suppose uniformly
bounded.

Let Jt be the semi-infinite Jacobi matrix associated with the system (1)-(2), that
is

Jt =



b0(t) a0(t) 0 0 · · ·

a0(t) b1(t) a1(t) 0 · · ·

0 a1(t) b2(t) a2(t)
. . .

0 0 a2(t) b3(t)
. . .

...
...

. . .
. . .

. . .


.

If µ is a nontrivial probability measure supported on some interval E ⊂ R, then
it is very well known that there exists a unique sequence of polynomials {pn}n>0,
assuming the leading coefficient of pn is positive, satisfying∫

E
pn(x)pm(x)dµ(x) = δn,m, n,m > 0.

{pn}n>0 is then said to be the sequence of orthonormal polynomials with respect to
µ. {pn}n>0 satisfies the three term recurrence relation

xpn(x) = an pn+1(x) + bn pn(x) + an−1 pn−1(x), n > 0,

with the initial condition p−1 = 0, p0(x) = 1. Notice that the matrix representation
of the recurrence relation is the Jacobi matrix defined above. We use the notation
Jµ = J0, i.e. with entries an(0) = a0

n and bn(0) = b0
n. Favard’s theorem says that, given

any Jacobi matrix J̃, there exists a measure µ on the real line for which J̃ = Jµ. In
general, µ is not unique.

Flaschka’s main observation is that the equations (1)-(2) can be reformulated in
terms of the Jacobi matrix Jt as the Lax pair

J̇t = [A,Jt] = AJt −JtA,

with

A =



0 a0(t) 0 0 · · ·

−a0(t) 0 a1(t) 0 · · ·

0 −a1(t) 0 a2(t)
. . .

0 0 −a2(t) 0
. . .

...
...

. . .
. . .

. . .


= (Jt)+− (Jt)−,

where we use the standard notation (Jt)+ (resp. (Jt)−) for the upper-triangular (resp.
lower-triangular) projection of the matrix Jt, and [·, ·] denotes the commutator. At



4 K. Castillo, L. Garza and F. Marcellán

the same time, the corresponding orthogonality measure dµ(·, t) goes through a sim-
ple spectral transformation,

dµ(x, t) = e−txdµ(x,0), t > 0. (3)

Notice that spectral transformations of orthogonal polynomials on the real line play
a central role in the solution of the problem. Indeed, the solution of Toda lattice is
a combination of the inverse spectral problem from {a0

n}n>0, {b0
n}n>0 associated with

the measure dµ = dµ(·,0), the spectral transformation (3), and the direct spectral
problem from {an(t)}n>0, {bn(t)}n>0 associated with the measure dµ(·, t). A gener-
alization of the perturbation (3) has been analyzed in [9], where the authors also
describe the time evolution of the zeros of such polynomials.

In this contribution, we are interested in the analysis of the dynamical properties
of the family of orthogonal polynomials Pn(x, t) with respect to the measure

dµ̃(x) = (1− J(t))dµ(x) + J(t)δ(x), (4)

where µ is a symmetric (i.e, dµ(x) = ω(x)dx with ω(x) = ω(−x) and supp(dµ(x))
symmetric) nontrivial probability measure supported on the real line, and J :R+→

[0,1] is a positive C1 function. In other words, a time-dependent mass J(t) is added
to µ, in such a way that the new measure µ̃ is also normalized. This problem has been
analyzed in [21], where the authors describe the dynamics of the corresponding or-
thogonal polynomials and the recurrence relation coefficients, and the connection of
this problem with the Darboux transformation. This kind of perturbations are par-
ticular examples of the so-called Uvarov perturbations. They have been extensively
studied in [4], where end mass points are considered, and in [1], [11] in a more
general framework. In [8], the author deals with an electrostatic interpretation of the
zeros of the orthogonal polynomials associated to the perturbed measure, when it is
assumed that µ is a measure satisfying some extra conditions.

The manuscript is organized as follows. In Section 2, we extend the results in [21]
for non symmetric measures, using a symmetrization process. In Section 3, we ana-
lyze the dynamical behavior of the zeros of Pn(x, t), when the orthogonality measure
is semiclassical. Some representative examples of such dynamics are shown, when
µ is a symmetric classical measure. Finally, in Section 4 we deal with a similar
transformation for orthogonal polynomials with respect to measures supported on
the unit circle.

2 Time dependence of orthogonal polynomials and
symmetrization problems

Let {Pn}n>0 be the sequence of monic orthogonal polynomials with respect to a
symmetric measure µ supported on a symmetric infinite subset of the real line. If we
denote by {Pn(x, t)}n>0 the sequence of monic orthogonal polynomials associated
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with µ̃ defined in (4), then (see [1], [11])

Pn(x, t) = Pn(x)−
J(t)Pn(0)

1− J(t) + J(t)Kn−2(0,0)
Kn−2(x,0), (5)

where Kn(x,y) is the n-th reproducing kernel defined by

Kn(x,y) =

n∑
k=0

Pk(x)Pk(y)
‖Pk‖2

=
Pn+1(x)Pn(y)−Pn(x)Pn+1)(y)

‖Pn‖2(x− y)
,

where the expression in the right hand side is known as the Christoffel-Darboux
formula and it is valid if x , y. Notice that Pn(x) = Pn(x,0), i.e., the perturbed poly-
nomials at zero time. Since µ is symmetric, we have P2n+1(0) = 0, so that

P2n+1(x, t) = P2n+1(x), n > 0,

P2n(x, t) = P2n(x)−
J(t)P2n(0)

1− J(t) + J(t)K2n−2(0,0)
K2n−2(x,0), n > 0, t > 0.

In other words, the odd degree polynomials are invariant under time. Our interest is
to find the differential equation satisfied by Pn(x, t) with respect to the time param-
eter. Obviously, Ṗ2n+1(x, t) = 0. Differentiating P2n(x, t) with respect to the time we
have

Ṗ2n(x, t) = −
J̇(t)P2n(0)

[1− J(t) + J(t)K2n−2(0,0)]2 K2n−2(x,0),

and using the Christoffel-Darboux formula, we get

Ṗ2n(x, t) = rn
P2n−1(x)

x
, (6)

with

rn = −
J̇(t)P2n(0)P2n−2(0)

‖P2n−2‖2[1− J(t) + J(t)K2n−1(0,0)]2 . (7)

Furthermore, since

K2n−1(x,0) =
P2n−1(x)P2n−2(0)
‖P2n−2‖2x

,

we have

K2n−1(0,0) =
P′2n−1(0)P2n(0)

‖P2n−2‖2
,

so that

rn = −
J̇(t)P2n(0)P2n−2(0)‖P2n−2‖

2

[(1− J(t))‖P2n−2‖2 + J(t)P′2n−1(0)P2n(0)]2 . (8)

In [21], the authors show that in this case, the dynamics of the coefficients of the
recurrence relation is given by

ḋ2n = rn, ḋ2n+1 = −rn+1,
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where dn = a2
n. This represents a non-local integrable chain with continuous time

and discrete space variable. It is related to the so-called Uvarov-Chihara problem in
the theory of orthogonal polynomials (see [20]).

The dynamics of the sequence of polynomials Pn with respect to the time can
be easily obtained for the general (non symmetric) case using a symmetrization
process. Given a measure µ, we can define a linear functional u in the linear space
of polynomials with real coefficients P such that

u[q(x)] =

∫
E

q(x)dµ(x), q ∈ P.

If µ is a probability measure, then u is said to be positive definite. In a more general
framework, it is enough for u to be quasi definite (i.e, the principal leading subma-
trices of its Gram matrix with respect to the canonical basis {xn}n>0 are nonsingular)
for the existence of a sequence monic polynomials with respect to u to be guar-
anteed. Let denote such a sequence by {Pn}n>0, and define the linear functional us
as

us[x2n] := u[xn], us[x2n+1] := 0, n > 0.

This is, the linear functional us is symmetric. Thus, it is well known ([3]) that, if
we denote by {Qn}n>0 the sequence of monic polynomials orthogonal with respect
to us, then

Q2n(x) = Pn(x2), Q2n+1(x) = xP̃n(x2), n > 0,

where {P̃n}n>0 is the sequence of monic polynomials orthogonal with respect to the
linear functional ũ = xu (i.e ũ[q] = u[xq]) for any q ∈ P. {P̃n}n>0 is the sequence of
kernel polynomials of parameter 0 (see [3]), and they can be expressed in terms of
{Pn(x)}n>0 by

P̃n(x) =
1
x

(
Pn+1(x)−

Pn+1(0)
Pn(0)

Pn(x)
)
, n > 0.

A necessary and sufficient condition for their existence is that Pn(0) , 0, n > 0 (in
the positive definite case, that 0 < supp(µ)).

Therefore, if u is a (non necessarily symmetric) positive definite linear functional,
then let {Pn(x, t)}n>0 be the sequence of monic polynomials orthogonal with respect
to the linear functional ut := (1− J(t))u + J(t)δ(x). Thus,

Pn(x2, t) = Q2n(x, t), n > 0,

where {Qn(x, t)}n>0 are symmetric polynomials orthogonal with respect to the linear
functional us obtained from the symmetrization of ut and, therefore,

Ṗn(x2, t) = Q̇2n(x, t) = rn
Q2n−1(x, t)

x
= rn

xP̃n−1(x2, t)
x

,

where rn is computed using the polynomials Qn and the polynomials P̃n(x, t) are
orthogonal with respect to the linear functional xut, provided Pn(0, t) , 0, n > 1.
Then,
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Ṗn(x, t) = rnP̃n−1(x, t), n > 1.

Furthermore, from Q2n−1(x, t) = xP̃n(x2, t), we get

Q̇2n−1(x, t) = x ˙̃Pn(x2, t) = 0,

we get ˙̃Pn(x, t) = 0, n > 0. As a consequence

Proposition 1. Let {Pn(x)}n>0 be the sequence of monic polynomials with respect
a nontrivial probability measure dµ. Let dµ̃ be defined as in (4) and denote by
{Pn(x, t)}n>0 its corresponding sequence of monic orthogonal polynomials. Then,

Ṗn(x, t) =
rn

x

(
Pn(x, t)−

Pn(0, t)
Pn−1(0, t)

Pn−1(x, t)
)
, n > 1.

3 Time evolution of zeros of semiclassical orthogonal
polynomials

Let us consider a symmetric positive definite linear functional u which is semiclas-
sical, i.e.,

D(φ(x)u) = Ψ (x)u,

for some polynomials φ and Ψ , which are even and odd functions, respectively, with
degΨ > 1, and let us define the linear functional

ũ = (1− J(t))u + J(t)δ(x). (9)

Here, as above, J :R+→ [0,1] is a positive C1 function. Then, we have

x2φ(x)ũ = (1− J(t))x2φ(x)u.

Applying the derivative operator in both sides we get

D[x2φ(x)ũ] = (1− J(t))D[x2φ(x)u]
= (1− J(t))[2xφ(x)u + x2D(φu)]
= 2xφũ + (1− J(t))x2Ψu

= (2xφ+ x2Ψ )ũ.

Thus, ũ is also semiclassical, and then its corresponding sequence of monic orthog-
onal polynomials, {Pn(x, t)}n>0, satisfies the structure relation ([11], [12])

x2φ(x)
∂

∂x
Pn(x; t) = An(x; t)Pn(x; t) + Bn(x; t)Pn−1(x; t), (10)

where the functions An(x; t),Bn(x; t) can be calculated explicitly using the measure
associated with u and its corresponding sequence or orthogonal polynomials (see
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[2], [9], [12]). Let xn,k(t) be the k-th zero of Pn(x; t), i.e.,

Pn(xn,k(t), t) = 0.

Following [9], differentiating the last equation with respect t, we obtain

∂

∂x
Pn(x; t)

∣∣∣∣∣
x=xn,k

ẋn,k + Ṗn(xn,k, t) = 0.

Thus, evaluating (10) with n = 2m at x = x2m,k(t) we get

x2
2m,k(t)φ(x2m,k(t))

∂

∂x
P2m(x2m,k(t); t) = Bn(x2m,k(t); t)P2m−1(x2m,k(t); t),

and, as a consequence, from (6) we obtain

ẋ2m,k(t) = −rm
x2m,k(t)φ(x2m,k(t))

B2m(x2m,k(t))
. (11)

Next, we consider two examples of classical families (semiclassical of class zero)
of orthogonal polynomials that are symmetric, namely the Gegenbauer (with param-
eter α= β= 1) and Hermite polynomials. In both cases, since their structure relations
are known, An(x, t) and Bn(x, t) can be easily obtained directly from the structure and
recurrence relations.

First, notice that from (5), we have

P′2n(x, t) = P′2n(x)−
J(t)P2n(0)P2n−2(0)

1− J(t) + J(t)Kn−2(0,0)
xP′2n−1(x)−P2n−1(x)

‖P2n−2‖2x2 , (12)

where P′ denotes the derivative with respect to x. Thus,

x2φ(x)P′2n(x, t) = x2φ(x)P′2n(x)−M(t)φ(x)[xP′2n−1(x)−P2n−1(x)], (13)

where
M(t) =

J(t)P2n(0)P2n−2(0)
[1− J(t) + J(t)Kn−2(0,0)]‖P2n−2‖2

.

1. For the Gegenbauer polynomials with α = β = 1, we have φ(x) = 1− x2 and
(see [12])

φ(x)P′n(x) = anPn+1 + cnPn−1(x), (14)
xPn(x) = Pn+1(x)−γnPn−1(x), (15)

where an,cn,γn are given by
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an = −n,

cn =
4n(n + 1)2(n + 2)(n + 3)

(2n + 1)(2n + 2)2(2n + 3)
,

γn =
4n(n + 1)2(n + 2)

(2n + 1)(2n + 2)2(2n + 3)
.

As a consequence,

(1− x2)P′n(x) = anxPn(x)− (anγn− cn)Pn−1(x). (16)

Thus, from (13) and (16), it is straightforward to show that

x2(1− x2)P′2n(x, t) = An(x, t)P2n(x, t) + Bn(x, t)P2n−1(x, t),

with

An(x, t) = a2nx3−M(t)
a2n−1γ2n−1− c2n−1

γ2n−1
x,

Bn(x, t) = −(a2n−1γ2n−1− c2n−1 + M(t))x2−M(t)
(
a2n−1x2−φ(x)−

An(x, t)
x

)
,

which can be reduced after some calculations to

An(x, t) = a2nx3−M(t)
(4n−1)(2n−1)2

n2 x,

Bn(x, t) =

[
(4n2−1)(4n−1)2

4n + 1
−a2n− (2 + a2n−1)M(t)

]
x2

+
(4n−1)(2n−1)2

n2 M2(t) + M(t).

Notice that in this case, An(x, t) and Bn(x, t) are polynomials in x. Thus, from (11),
the dynamics of the zeros of Pn(x, t) can be described as

ẋ2m,k(t) = −rm
x2m,k(t)(1− x2

2m,k(t))

B2m(x2m,k(t))
.

2. Now, we consider the Hermite polynomials Hn. In this case, we have φ(x) = 1,
H′n(x) = nHn−1(x), and

Hn+1(x) = xHn(x)−
1
2

nHn−1(x).

Thus, proceeding as above, we get

x2H′2n(x, t) = An(x, t)H2n(x, t) + Bn(x, t)H2n−1(x, t),

with
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An(x, t) =
2(2n−1)

n
M(t)x,

Bn(x, t) = 2
(
n−

2n−1
n

M(t)
)

x2 +

(
1−

2(2n−1)
n

M(t)
)

M(t).

Again, since we have a classical family, An(x, t) and Bn(x, t) are polynomials in x.
As a consequence, the behavior of the zeros of H2m(x, t) can be described as

ẋ2m,k(t) = −rm
x2m,k(t)

B2m(x2m,k(t))
.

4 Time dependence of Verblunsky coefficients for OPUC

Given a nontrivial probability measure σ supported on the unit circle T, there exists
a sequence of monic polynomials {Φn}n>0 which is orthogonal with respect to σ, i.e.∫

T

Φn(z)Φm(z)dσ(z) = κnδn,m, κn > 0, n,m > 0.

They are called orthogonal polynomials on the unit circle (OPUC). These polyno-
mials satisfy the recurrence relation (see [16], [17])

Φn+1(z) = zΦn(z) +Φn+1(0)Φ∗n(z), n > 1,

where Φ∗n(z) = znΦn(1/z̄) is called the reversed polynomial, and the complex num-
bers {Φn(0)}n>1 satisfy |Φn(0)| < 1. They are called Verblunsky (reflection, Schur,
Szegő) coefficients.

On the other hand, if µ is a nontrivial probability measure supported on [−1,1],
then it is very well know ([17]) that it induces a nontrivial positive measure σ sup-
ported on the unit circle. This process is called the Szegő transformation. On the
other hand, if σ is induced through the Szegő transformation, then their correspond-
ing orthogonal polynomials Φn have real coefficients, and the Verblunsky coeffi-
cients are also real. In this case, consider the perturbation

dσ̃(z) = (1− J(t))dσ(z) + J(t)δ(z−1),

i.e., a time dependent mass is added at the point z = 1, where J : R+ → [0,1] is a
positive C1 function. Notice that this is the same perturbation defined in the pre-
vious sections for orthogonal polynomials on the real line, although the symmetry
requirement has been removed. As before, if Φn(z; t) is the MOPS with respect to
σ̃, then

Φn(z; t) =Φn(z)−
J(t)Φn(1)

1− J(t) + J(t)Kn−1(1,1)
Kn−1(z,1), (17)

where Kn(z,y), the reproducing kernel, is now defined as (see [16], [17])
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Kn(z,y) =

n∑
k=0

Φk(z)Φk(y)
‖Φk‖2

=
Φ∗n+1(z)Φ∗n+1(y)−Φn+1(z)Φn+1)(y)

‖Φn+1‖2(1− zȳ)
,

provided zȳ , 1. Therefore,

Φn(0; t) =Φn(0)−
J(t)Φn(1)

1− J(t) + J(t)Kn−1(1,1)
Kn−1(0,1), (18)

and since we have real coefficients and Φ∗n(0) = 1,

Φn(0; t) =Φn(0)−
J(t)Φ2

n(1)(1−Φn(0))
‖Φn‖2[1− J(t) + J(t)Kn−1(1,1)]

. (19)

Thus,

Φ̇n(0; t) = −
J̇(t)Φ2

n(1)(1−Φn(0))
‖Φn‖2[1− J(t) + J(t)Kn−1(1,1)]2 ,

which describes the dynamic behavior of the Verblunsky coefficients of the per-
turbed measure with respect to the time. We will show that Φn(1) and Kn−1(1,1) can
be expressed in terms of the previous Verblunsky coefficients. Notice that, from the
recurrence relation, we have

Φn(1) =Φn−1(1) +Φn(0)Φ∗n−1(1),

but since Φn−1 has real coefficients, we get

Φn(1) = [1 +Φn(0)]Φn−1(1),

and, recursively,

Φn(1) =

n∏
k=1

(1 +Φk(0)).

On the other hand,

Kn−1(1,1) =

n−1∑
k=0

Φ2
k(1)

‖Φk‖2
=

n−1∑
k=0

∏k
j=1(1 +Φ j(0))2∏k
j=1(1−Φ2

j (0))
=

n−1∑
k=0

∏k
j=1(1 +Φ j(0))∏k
j=1(1−Φ j(0))

.

As a consequence, in order to describe the dynamics of Φn(0; t), the values of
{Φk(0)}nk=1 are required. The situation can be simplified if symmetric measures are
considered. As an example, consider the perturbation of the Lebesgue measure on
the real line defined by

dµ̃(x, t) = dx +
1

J(t)
δ(x + 1) +

1
J(t)

δ(x−1).

Notice that dµ̃(x, t) is symmetric. Applying the Szegő transformation to dµ̃(x) will
induce a measure dσ(z, t) on the unit circle which is also symmetric. It was shown



12 K. Castillo, L. Garza and F. Marcellán

in [7] that in such a case, the Verblunsky coefficients associated with dσ are

Φ2n(0, t) =
−1

2n + 1
3n2(n + 1)2 + 2n(n + 1)J(t)− J2(t)
n2(n + 1)2 + 2n(n + 1)J(t) + J2(t)

,

Φ2n+1(0, t) = 0.

In other words, the dynamics of Φn(0) can be obtained easily only in terms of J(t).
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