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Abstract

A pair of regular linear functionals (U ,V) is said to be a (M,N)-coherent pair of order
(m, k) if their corresponding sequences of monic orthogonal polynomials {Pn(x)}n≥0 and
{Qn(x)}n≥0 satisfy a structure relation such as

M∑
i=0

ai,nP
(m)
n+m−i(x) =

N∑
i=0

bi,nQ
(k)
n+k−i(x), n ≥ 0,

where ai,n and bi,n are complex numbers such that aM,n 6= 0 if n ≥ M , bN,n 6= 0 if
n ≥ N , and ai,n = bi,n = 0 when i > n. In the first part of this work we focus our
attention in the algebraic properties of an (M,N)-coherent pair of order (m, k). To be
more precise, let us assume that m ≥ k. If m = k then U and V are related by a rational
factor (in the distributional sense); if m > k then U and V are semiclassical and they are
again related by a rational factor. In the second part of this work we deal with a Sobolev
type inner product defined in the linear space of polynomials with real coefficients, P, as

〈p(x), q(x)〉λ =

∫
R
p(x)q(x)dµ0(x) + λ

∫
R
p(m)(x)q(m)(x)dµ1(x), p, q ∈ P,

where λ is a positive real number, m is a positive integer number and (µ0, µ1) is a (M,N)-
coherent pair of order m of positive Borel measures supported on an infinite subset of
the real line, meaning that the sequences of monic orthogonal polynomials {Pn(x)}n≥0
and {Qn(x)}n≥0 with respect to µ0 and µ1, respectively, satisfy a structure relation
as above with k = 0, ai,n and bi,n being real numbers fulfilling the above mentioned
conditions. We generalize several recent results known in the literature in the framework
of Sobolev orthogonal polynomials and their connections with coherent pairs (introduced
in [A. Iserles et al., J. Approx. Theory 65 (2), 151-175 (1991)]) and their extensions. In
particular, we show how to compute the coefficients of the Fourier expansion of functions
on an appropriate Sobolev space (defined by the above inner product) in terms of the
sequence of Sobolev orthogonal polynomials {Sn(x;λ)}n≥0.

Keywords: Moment linear functionals, orthogonal polynomials, coherent pairs, Sobolev
orthogonal polynomials, approximation by polynomials, algorithms.
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1. Introduction

In this work we deal with sequences of monic polynomials, {Sn(x;λ)}n≥0, orthogonal
with respect to the Sobolev inner product

〈p(x), q(x)〉λ =

∫
R
p(x)q(x)dµ0(x) + λ

∫
R
p(m)(x)q(m)(x)dµ1(x), p, q ∈ P, (1.1)

where λ is a positive real number, m is a positive integer number (it indicates a derivative)
and (µ0, µ1) is a (M,N)-coherent pair of order m of positive Borel measures supported
on an infinite subset of the real line, i.e., if {Pn(x)}n≥0 and {Qn(x)}n≥0 are the sequences
of monic orthogonal polynomials (SMOPs) with respect to µ0 and µ1, respectively, then

M∑
i=0

ai,nP
(m)
n+m−i(x) =

N∑
i=0

bi,nQn−i(x), n ≥ 0, (1.2)

where ai,n and bi,n are complex numbers such that aM,n 6= 0 if n ≥ M , bN,n 6= 0 if
n ≥ N , and ai,n = bi,n = 0 when i > n.

The case (M,N) = (1, 0) and m = 1 has a special historical importance. Such a pair
of measures is said to be a coherent pair and it has been introduced and analyzed by A.
Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna [14]. Later on, F. Marcellán and
J. Petronilho [19] described all the coherent pairs of measures when one of the measures
is a classical one. Finally, H. G. Meijer [23] proved that there are no other coherent
pairs, showing that, indeed, in a coherent pair one of the measures must be a classical
one (Jacobi or Laguerre) and the other one is a rational perturbation of it. Meijer’s paper
had a great influence in the subsequent developments of the theory of coherent pairs of
orthogonal polynomials. Indeed, after these works, several other ones appeared in the
literature, dealing with generalizations of the notion of coherence, including in a more
general framework of quasi-definite linear functionals. For instance, among others, we
mention here the works by K. H. Kwon, J. H. Lee, and F. Marcellán [17], F. Marcellán,
A. Mart́ınez-Finkelshtein and J. J. Moreno-Balcázar [18], M. de Bruin and H. G. Meijer
[24], M. Alfaro, F. Marcellán, A. Peña, and M. L. Rezola [1, 2, 3, 4], A. M. Delgado and
F. Marcellán [9, 10], J. Petronilho [25], M. N. de Jesus and J. Petronilho [15, 16], A.
Branquinho and M. N. Rebocho [6], F. Marcellán and N. C. Pinzón-Cortés [20], and M.
Alfaro, A. Peña, J. Petronilho, and M. L. Rezola [5]. For a review about these and other
contributions, see e.g. the introductory sections in the recent papers [16] and [20].

All these generalizations of the notion of coherence may be regarded as special cases
of the notion of (M,N)-coherence of order (m, k) to be considered in the present paper.
Indeed, given two SMOPs {Pn(x)}n≥0 and {Qn(x)}n≥0, and four nonnegative integer
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numbers M,N,m, k, we say these two SMOPs form a (M,N)-coherent pair of order
(m, k) if a relation such as

M∑
i=0

ai,nP
(m)
n+m−i(x) =

N∑
i=0

bi,nQ
(k)
n+k−i(x), n ≥ 0,

holds, where ai,n and bi,n are complex numbers such that aM,n 6= 0 if n ≥ M , bN,n 6= 0
if n ≥ N , and ai,n = bi,n = 0 when i > n. The above structure relation has been already
considered in [15], where it has been proved that, under some natural conditions, and
assuming, without lost of generality, that 0 ≤ k ≤ m, the regular moment linear func-
tionals U and V associated with the SMOPs {Pn(x)}n≥0 and {Qn(x)}n≥0 (respectively)
fulfill a distributional differential equation

Dm−k(φ(x)V) = ψ(x)U ,

where φ(x) and ψ(x) are some polynomials. Furthermore in [15] the authors also proved
that if m = k then U and V are related by a rational factor and, if m = k + 1, then
both U and V must be semiclassical, being also related by a rational factor. For a survey
about the theory of semi-classical linear functionals, the basic reference is P. Maroni [21].

When m > k + 1 the problem of determining whether U and V are semiclassical (for
arbitrary M and N) remained open. In the present work we fill this gap by proving that
even when m > k + 1 both U and V are semiclassical and they are related by a rational
factor. This will be stated in Section 3. On the other hand, when the above linear
functionals are associated with positive Borel measures, then a useful algebraic relation
between the sequences {Sn(x;λ)}n≥0 and {Pn(x)}n≥0 will be deduced, provided that the
measures form an (M,N)-coherent pair of order m in the sense of (1.2) and {Sn(x;λ)}n≥0
is an SMOP with respect to the inner product (1.1). This will be the topic to be analyzed
in Section 4. Notice that an inner product of this type, involving higher order derivatives,
was already considered in [20] in a situation corresponding to (1, 1)-coherence of order
m. In Section 5 we built and implement an efficient algorithm for the computation of
the Fourier-Sobolev coefficients, i.e. the coefficients of the Fourier expansion of func-
tions of the Sobolev space Wm,2(I, µ0, µ1) in terms of the SMOP {Sn(x;λ)}n≥0, thus
extending to the more general framework of (M,N)-coherence of order m the previous
algorithms known in the literature for coherence [14], generalized coherence [17], and
(M,N)-coherence (of order 1) [16]. Notice that from such an algorithm the evaluation
of the Fourier-Sobolev coefficients does not need the explicit expressions of the Sobolev
orthogonal polynomials. This is an extension of a remarkable fact pointed out by Iserles
et. al. in [13] for coherent pairs. In such a paper the authors point out that when we
wish to approximate a function by its projection into the linear space of polynomials and,
simultaneously, to approximate its derivative by the derivative of the polynomial approx-
imant in the linear space L2([−1, 1]; dx) the Fourier-Sobolev projector in the Sobolev
space W 1,2(([−1, 1]; dx, dx) is more valuable than the standard Fourier projector in such
a space. Given that the derivative of the function is steep, it is only expected that
the quality of the projection in the conventional L2 norm deteriorates. In general, the
Fourier Legendre projector is poor near the end points whereas the Fourier-Sobolev pro-
jector displays a reasonably good behaviour throughout the interval [−1, 1]. At the end
of Section 5 an illustrative example of a Fourier-Sobolev expansion is presented for a
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particular situation involving a (2, 1)-coherent pair of order 3. Thus, a comparison of the
remainder errors for the Fourier and Fourier-Sobolev projectors for higher derivatives is
analyzed, from a computational point of view, in a more general framework than [13].
Before going to the main part of this work in the next Section 2 we recall some basic
background from the general theory of orthogonal polynomials needed in the sequel.

2. Basic Tools

For each nonnegative integer number n, Pn will denote the linear space of the poly-
nomials with complex coefficients of degree less than or equal to n, and P = ∪∞n=0Pn.
〈U , p(x)〉 will denote the image of the polynomial p ∈ P by the linear functional U . If

Pn(x) is a monic polynomial, then P
[m]
n (x) denotes the monic polynomial of degree n

defined by

P [m]
n (x) :=

P
(m)
n+m(x)

(n+ 1)m
, n = 0, 1, 2, · · · ,

where (α)n is the Pochhammer symbol : (α)0 = 1; (α)n = α(α+1) · · · (α+n−1) if n ≥ 1.
A linear functional U is said to be quasi-definite or regular if det

(
[ui+j ]

n
i,j=0

)
6= 0

for every n ≥ 0, where un = 〈U , xn〉 is its moment of order n. In this way, there
exists a sequence of monic polynomials {Pn(x)}n≥0 such that deg(Pn(x)) = n and
〈U , Pn(x)Pm(x)〉 = κnδn,m, with κn 6= 0, for n,m ≥ 0. {Pn(x)}n≥0 is called the sequence
of monic orthogonal polynomials (SMOP) with respect to U . In this case, if {pn}n≥0 is
the dual basis associated with {Pn(x)}n≥0, which is defined by 〈pm, Pn(x)〉 = δm,n for
n,m ≥ 0, then

pn =
Pn(x)

〈U , P 2
n(x)〉

U , ∀n ≥ 0. (2.1)

Besides, if {en}n≥0 is the dual basis of the sequence {P [m]
n (x)}n≥0 (for fixed m ≥ 0), then

Dmen = (−1)m(n+ 1)mpn+m, ∀n ≥ 0, (2.2)

where, for a linear functional V, DV denotes its (distributional) derivative, which is
defined as the linear functional such that

〈DV, p(x)〉 = −〈V, p′(x)〉, p ∈ P.

When det
(
[ui+j ]

n
i,j=0

)
> 0 for all n ≥ 0, U is said to be a positive definite linear func-

tional. In this case, there exists a positive Borel measure µ supported on the real line
such that 〈U , p(x)〉 =

∫
R p(x)dµ(x), ∀p ∈ P. Besides,

∫
R P

2
n(x)dµ(x) <

∫
R p

2(x)dµ(x)
holds for every monic polynomial of degree n, p(x) 6= Pn(x), which is called the extremal
property of the SMOP {Pn(x)}n≥0 (see e.g. [26]).

The linear functionals Dirac Delta at a, ϕ(x)U and (x− a)−1U , for a ∈ C and ϕ ∈ P,
are defined by 〈δa, p(x)〉 = p(a), 〈ϕ(x)U , p(x)〉 = 〈U , ϕ(x)p(x)〉, and

〈
(x− a)−1U , p(x)

〉
=〈

U , p(x)−p(a)x−a

〉
, for p ∈ P.

Lemma 2.1. Let U be a linear functional, and let ϕ(x) be a polynomial of degree n whose
zeros xi ∈ C, 1 ≤ i ≤ n, are simple. Then〈

ϕ−1(x)U , p(x)
〉

=

〈
U , p(x)− Lϕ(x; p)

ϕ(x)

〉
, p ∈ P, (2.3)
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ϕ−1(x)ϕ(x)U = U −
n∑
i=1

1

ϕ′(xi)

〈
U , ϕ(x)

x− xi

〉
δxi , (2.4)

where Lϕ(x; p) denotes the interpolatory polynomial of p(x) at the zeros of ϕ(x) given by

Lϕ(x; p) =

n∑
i=1

p(xi)
ϕ(x)

(x− xi)ϕ′(xi)
.

Proof. The proof of (2.3) uses induction on n, and (2.4) follows from (2.3).

Proposition 2.2. Let U and V be two positive-definite linear functionals related by the
expression of rational type

ϕ(x)U = ρ(x)V, (2.5)

where ϕ(x) and ρ(x) are polynomials of degree r and t, respectively, and let µ0 and µ1 be
their corresponding positive Borel measures supported on the real line. Assume that µ1

has compact support and that all the zeros of ϕ(x) are real and simple, and they lie out
the convex-hull of the support of µ1, i.e., xi ∈ R \ co(supp(µ1)) for all 1 ≤ i ≤ r. For
each ` = 1, · · · , r, define

η` =
1

ϕ′(x`)

∫
R

ϕ(x)

x− x`
dµ0 −

1

rϕ′(x`)

r∑
i=1

{
ρ(xi)F (x`, µ1)

+

t−1∑
j=0

(θxiρ(x))
(j)

(0)

j!

[
vj + (x` − xi)

j−1∑
k=0

xj−1−k` vk + xj`(x` − xi)F (x`, µ1)

]}
,

where θxiρ(x) = ρ(x)−ρ(xi)
x−xi and F ( · , µ1) is the Cauchy transform of the measure µ1

defined by

F (z, µ1) =

∫
R

dµ1(x)

x− z
, z ∈ C \ co(supp(µ1)).

Then the measures µ0 and µ1 are related by

dµ0(x) =
ρ(x)

ϕ(x)
dµ1(x) +

r∑
`=1

η`δx` , (2.6)

provided η` ≥ 0 for all ` = 1, · · · , r and the right-hand side of (2.6) defines a positive
Borel measure.

Proof. From (2.5) we have that ϕ−1(x)ϕ(x)U = ϕ−1(x)ρ(x)V. Hence, from (2.3) we get,
for every fixed p ∈ P,〈

U , p(x)− Lϕ(x; p)

ϕ(x)
ϕ(x)

〉
=

〈
V, p(x)− Lϕ(x; p)

ϕ(x)
ρ(x)

〉
.

Consequently,∫
R
p(x)dµ0 −

∫
R
Lϕ(x; p)dµ0 =

∫
R
p(x)

ρ(x)

ϕ(x)
dµ1 −

∫
R
Lϕ(x; p)

ρ(x)

ϕ(x)
dµ1,
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where, since Lϕ(x; p) =
∑r
i=1 p(xi)

ϕ(x)
(x−xi)ϕ′(xi)

, it follows that∫
R
Lϕ(x; p)dµ0 −

∫
R
Lϕ(x; p)

ρ(x)

ϕ(x)
dµ1 =

r∑
`=1

p(x`)

ϕ′(x`)

[∫
R

ϕ(x)

x− x`
dµ0 −

∫
R

ρ(x)

x− x`
dµ1

]
.

On the other hand, since θxiρ(x) is a polynomial of degree t− 1, then from its definition
and its Taylor polynomial, we obtain

ρ(x) =
1

r

r∑
i=1

ρ(x) =
1

r

r∑
i=1

t−1∑
j=0

(θxiρ(x))
(j)

(0)

j!
xj

 (x− xi) + ρ(xi)

 .
Thus, the proof is complete taking in account that

xj(x− xi)
x− x`

= xj + (x` − xi)
j−1∑
k=0

xj−1−k` xk +
xj`(x` − xi)
x− x`

.

Remark 2.3. Under the remaining hypothesis of Proposition 2.2, the right-hand side
of (2.6) defines a positive Borel measure if, for instance, the polynomials ρ(x) and ϕ(x)
have the same sign in the interval co(supp(µ1)).

An important characterization of OPs is given by the Favard Theorem ([8]): {Pn(x)}n≥0
is the SMOP with respect to a regular linear functional U if and only if there exist com-
plex numbers {αn}n≥0 and {βn}n≥0, βn 6= 0, n ≥ 1, such that they satisfy the three-term
recurrence relation (TTRR)

Pn+1(x) = (x− αn)Pn(x)− βnPn−1(x), n ≥ 0, P0(x) = 1, P−1(x) = 0.

Moreover, U is positive definite if and only if αn ∈ R and βn+1 > 0, for n ≥ 0.

A linear functional U is said to be semiclassical if it is quasi-definite and there exist
σ, τ ∈ P \ {0}, deg(τ(x)) ≥ 1, such that D(σ(x)U) = τ(x)U holds. In this case, the class
of U is the nonnegative integer s := min max{deg(σ(x)) − 2,deg(τ(x)) − 1}, where the
minimum is taken among all pairs (σ(x), τ(x)) such that D(σ(x)U) = τ(x)U holds.

Proposition 2.4 ([22]). If U and V are quasi-definite linear functionals and they are
related by p(x)U = q(x)V, p, q ∈ P \ {0}, then, U is semiclassical if and only if so is V.
Moreover, if the class of U is s, then the class of V is at most s+ deg(p(x)) + deg(q(x)).

A semiclassical linear functional U (resp. SMOP {Pn(x)}n≥0) of class s = 0 is said
to be a classical linear functional (resp. classical SMOP).

Theorem 2.5 ([11, 12, 21]). A regular linear functional U is classical satisfying D(σ(x)U) =

τ(x)U if and only if, for m ≥ 1 fixed, {P [m]
n (x)}n≥0 is a SMOP associated to Ûm =

σm(x)U . Moreover, D(σ(x)Ûm) = [τ(x) +mσ′(x)]Ûm holds.

Finally, the formal Stieltjes series of a linear functional U is defined by

SU (z) := −
∑
n≥0

un
zn+1

.
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3. (M,N)-Coherent Pairs of Order (m, k)

Definition 3.1. A pair of regular linear functionals (U ,V) is said to be a (M,N)−coherent
pair of order (m, k), with M,N,m, k fixed nonnegative integer numbers, if their corre-
sponding SMOP {Pn(x)}n≥0 and {Qn(x)}n≥0 fulfill the following linear algebraic struc-
ture relation

P [m]
n (x) +

M∑
i=1

ai,nP
[m]
n−i(x) = Q[k]

n (x) +

N∑
i=1

bi,nQ
[k]
n−i(x), n ≥ 0, (3.1)

where ai,n and bi,n are complex numbers such that aM,n 6= 0 if n ≥ M , bN,n 6= 0 if
n ≥ N , and ai,n = bi,n = 0 if i > n. Furthermore, (U ,V) is said to be a (M,N)-coherent
pair of order m if it is a (M,N)-coherent pair of order (m, 0).

Remark 3.2. When (U ,V) is a (M,N)-coherent pair of order (m, k) and U or V is a
classical linear functional, then (U ,V) can be regarded as a (M,N)-coherent pair of order
(0, k) or (m, 0), respectively, and thus it can be seen as a (N,M)-coherent pair of order
k or a (M,N)-coherent pair of order m, respectively.

The next theorem improves several results stated in [15, 16, 20, 25] by giving a
complete description of the semiclassical case in the framework of (M,N)-coherence of
order (m, k).

Theorem 3.3. Let (U ,V) be a (M,N)-coherent pair of order (m, k) given by (3.1), with
m ≥ k, and det(LM+N ) 6= 0, where LM+N = [li,j ]

M+N−1
i,j=0 is the matrix of order M +N

with entries

li,j =

 aj−i,j if 0 ≤ i ≤ N − 1 and i ≤ j ≤M + i,
bj−i+N,j if N ≤ i ≤M +N − 1 and i−N ≤ j ≤ i,
0 otherwise,

(3.2)

and the convention a0,j1 = b0,j2 = 1 for 0 ≤ j1 ≤ N − 1 and 0 ≤ j2 ≤ M − 1. Then,
there exist polynomials φM+k+n(x) and ψN+m+n(x) of degrees M+k+n and N+m+n,
respectively, such that

Dm−k[φM+k+n(x)V] = ψN+m+n(x)U , n ≥ 0, (3.3)

and each one of the functionals U and V is a rational modification of the other one, i.e.,
there exist polynomials ϕ(x) and ρ(x) such that

ϕ(x)U = ρ(x)V. (3.4)

Moreover,

(i) If m = k, then U is a semiclassical linear functional if and only if so is V.

(ii) If m > k, then U and V are semiclassical linear functionals.

Proof. According to (3.1), set

Rn(x) =

M∑
i=0

ai,nP
[m]
n−i(x) =

N∑
i=0

bi,nQ
[k]
n−i(x), n ≥ 0, (3.5)
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where a0,n = b0,n = 1. Let {pn}n≥0, {qn}n≥0, {rn}n≥0, {en}n≥0 and {hn}n≥0 be
the dual bases associated with the SMOP {Pn(x)}n≥0, {Qn(x)}n≥0 and the sequences

{Rn(x)}n≥0, {P [m]
n (x)}n≥0 and {Q[k]

n (x)}n≥0, respectively. Since

〈en, Rj(x)〉 (3.5)=

M∑
i=0

〈en, ai,jP [m]
j−i(x)〉 =

{
aj−n,j if n ≤ j ≤ n+M,
0 otherwise,

〈hn, Rj(x)〉 (3.5)=

N∑
i=0

〈hn, bi,jQ[k]
j−i(x)〉 =

{
bj−n,j if n ≤ j ≤ n+N,
0 otherwise,

we get

en =
∑
j≥0

〈en, Rj(x)〉rj =

n+M∑
j=n

aj−n,jrj , n ≥ 0, (3.6)

hn =
∑
j≥0

〈hn, Rj(x)〉rj =
n+N∑
j=n

bj−n,jrj , n ≥ 0. (3.7)

These equations for 0 ≤ n ≤ N − 1 and 0 ≤ n ≤M − 1, respectively, yield the following
system of linear equations

LM+N



r0
...

rN−1
rN
...

rN+M−1


=



e0
...

eN−1
h0
...

hM−1


,

where the matrix LM+N = [li,j ]
M+N−1
i,j=0 is given by (3.2). Since det(LM+N ) 6= 0, we can

solve this linear system and get

ri = αi,0e0+· · ·+αi,N−1eN−1+αi,Nh0+· · ·+αi,N+M−1hM−1, 0 ≤ i ≤M+N−1, (3.8)

where αi,j , 0 ≤ j ≤ N +M − 1, are some constants. On the other hand, for every i ≥ 0,
if we multiply (3.6) for n = N + i by bN,M+N+i, and (3.7) for n = M + i by aM,M+N+i,
and then we subtract the resulting equations, we obtain

bN,M+N+ieN+i − aM,M+N+ihM+i

= β1,irmin{M,N}+i + · · ·+ βmax{M,N},irM+N+i−1, i ≥ 0, (3.9)

where βj,i, 1 ≤ j ≤ max{M,N}, i ≥ 0, are constants. On the other hand, for t ≥ 0 fixed,
from (3.6) we can recursively get an expression for rM+N+t as a linear combination of ri,
0 ≤ i ≤ M +N − 1, and ej , N ≤ j ≤ N + t, (since aM,M+j 6= 0, N ≤ j ≤ N + t). As a
consequence and using (3.8), (3.9) becomes

α̃i,0e0 + · · ·+ α̃i,N+i−1eN+i−1 + bN,M+N+ieN+i
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= β̃i,0h0 + · · ·+ β̃i,M−1hM−1 + aM,M+N+ihM+i, i ≥ 0,

where α̃i,j1 and β̃i,j2 , for 0 ≤ j1 ≤ N + i− 1 and 0 ≤ j2 ≤M − 1, are constants. Taking
the mth derivative in the above equation, since m ≥ k, from (2.2) it follows that

α̂i,0pm + · · ·+ α̂i,N+i−1pN+i−1+m + bN,M+N+i(−1)m(N + i+ 1)mpN+i+m =

Dm−k
[
β̂i,0qk + · · ·+ β̂i,M−1qM−1+k + aM,M+N+i(−1)k(M + i+ 1)kqM+i+k

]
,

for i ≥ 0. Therefore, from (2.1) we get (3.3) with

φM+k+n(x) = (−1)k
(M + n+ 1)kaM,M+N+n

〈V, Q2
M+k+n(x)〉

xM+k+n + lower degree terms, n ≥ 0,

ψN+m+n(x) = (−1)m
(N + n+ 1)mbN,M+N+n

〈U , P 2
N+m+n(x)〉

xN+m+n + lower degree terms, n ≥ 0.

Notice that whenm = k, for every n ≥ 0, (3.3) becomes (3.4) with ρ(x) = φM+k+n(x) and
ϕ(x) = ψN+m+n(x), and, as a consequence, the statement (i) follows from Proposition
2.4.

On the other hand, (3.3) becomes

m−k∑
i=0

(
m− k
i

)
φ
(i)
M+k+n(x)Dm−k−iV = ψN+m+n(x)U , n ≥ 0, (3.10)

with deg(φM+k+n(x)) = M + k + n and deg(ψN+m+n(x)) = N + m + n. Hence, let us
consider the following linear system resulting from (3.10) for n = 0, 1, . . .m− k,

Tm−k+1(x)


Dm−kV

...
DV
V

 =


ψN+m(x)U
ψN+m+1(x)U

...
ψN+m+(m−k)(x)U

 ,
where 0 6= det(Tm−k+1(x)) =

∏m−k
i=0

(
m−k
i

)
W [φM+k(x), φM+k+1(x), . . . , φM+k+(m−k)(x)]

= ρ(x) where W [ · ] denotes the Wronskian. If m > k we can solve this system for V and
DV and thus (3.4) follows as well as ρ(x)DV = ς(x)U , where ϕ(x) and ς(x) are some
polynomials. As a consequence,

D [ϕ(x)ρ(x)V] = (ϕ(x)ρ(x))
′ V + ϕ(x)ς(x)U =

[
(ϕ(x)ρ(x))

′
+ ς(x)ρ(x)

]
V,

D [ϕ(x)ρ(x)U ] = D
[
ρ2(x)V

]
= 2ρ(x)ρ′(x)V + ρ(x)ς(x)U = [2ϕ(x)ρ′(x) + ς(x)ρ(x)]U .

Therefore, V and U are semiclassical linear functionals, which proves the statement (ii).

Remark 3.4. When (U ,V) is a (M,N)-coherent pair of order (m, k) and m = k, it is
not possible to conclude that U and V are semiclassical. Indeed, in [25, Section 4] it
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was proved that if U and V are related by ϕ(x)U = ρ(x)V, with deg(ϕ(x)) = N and
deg(ρ(x)) = M , then

n+N∑
i=n−M

ai,n,1Pi(x) =

n+N∑
i=n−N

bi,n,1Qi(x), and

n+M∑
i=n−M

ai,n,2Pi(x) =

n+M∑
i=n−N

bi,n,2Qi(x), for n ≥ 0,

hold, where {ai,n,j}n≥0 and {bi,n,j}n≥0, j = 1, 2, are some constants. Thus, in this case,
for any pair of nonzero polynomials ϕ(x) and ρ(x), we can choose either U or V being a
non-semiclassical linear functional, and as a consequence, so is the other one.

Remark 3.5. When (U ,V) is a (M,N)-coherent pair of order (m, k) of positive-definite
linear functionals satisfying the same conditions of Theorem 3.3, then there exist poly-
nomials ϕ(x) and ρ(x) such that U and V are related by ϕ(x)U = ρ(x)V. Therefore,
when the zeros of either ϕ(x) or ρ(x) satisfy certain conditions, Proposition 2.2 states
the relation between the positive Borel measures µ0 and µ1 corresponding to U and V,
respectively. More precisely, it gives an expression for either µ0 in terms of µ1, or µ1 in
terms of µ0.

In the following theorem we deduce some relations for the formal Stieltjes series
associated with the linear functionals constituting a (M,N)-coherent pair of order (m, k).
Thus, we generalize the results in [15, Section 4].

Theorem 3.6. If (U ,V) is a (M,N)-coherent pair of order (m, k) given by (3.1), and
assuming the same condition as in Theorem 3.3, then

ψN+m+n(z)SU (z)− [φM+k+n(z)SV(z)]
(m−k)

= An(z), n ≥ 0, (3.11)

where An(z) = (Vθ0φM+k+n)(m−k)(z)−(Uθ0ψN+m+n)(z), deg(An(z)) ≤ n−1+max{M+
2k −m,N +m}, and

(Uθ0p) (x) =

n−1∑
j=0

aj+1

j∑
i=0

uix
j−i =

n−1∑
j=0

n−1∑
i=j

ai+1ui−j

xj , for p(x) =

n∑
j=0

ajx
j .

Moreover, SV(z) is the (formal) solution of the following non-homogeneous ordinary dif-
ferential equations of order m− k

m−k∑
i=0

Bi,n(z)S
(i)
V (z) = Cn(z), n ≥ 0, (3.12)

with polynomial coefficients

Bi,n(z) =

(
m− k
i

)[
ψN+m+n+1(z)φ

(m−k−i)
M+k+n (z)− ψN+m+n(z)φ

(m−k−i)
M+k+n+1(z)

]
,

Cn(z) = ψN+m+n(z)An+1(z)− ψN+m+n+1(z)An(z),

and deg (Bi,n(z)) ≤M+N+2k+2n+i+1, deg (Cn(z)) ≤ 2n+N+max{M+2k,N+2m}.
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Proof. From Theorem 3.3, for n ≥ 0 there exist polynomials

φM+k+n(x) =

M+k+n∑
j=0

rj,nx
j and ψN+m+n(x) =

N+m+n∑
j=0

tj,nx
j

such that 〈Dm−k[φM+k+n(x)V], xi〉 = 〈ψN+m+n(x)U , xi〉, for i ≥ 0. So

(−1)m−k(i−m+ k + 1)m−k

M+k+n∑
j=0

rj,nvi−m+k+j =

N+m+n∑
j=0

tj,nui+j , i, n ≥ 0,

where vi−m+k+j = 0 if i −m + k + j < 0. Thus, multiplying the above expression by
z−(i+1) and adding for i = 0, 1, . . . , we get in the left hand side

∑
i≥m−k

(i−m+ k + 1)m−k

M+k+n∑
j=0

rj,nvi−m+k+jz
−(i+1)

=

M+k+n∑
j=0

rj,nz
j−m+k

∑
`≥0

(`+ 1)m−k
v`+j
z`+j+1

=

M+k+n∑
j=0

rj,nz
j−m+k

m−k∑
l=0

(
m− k
l

)
(−j)m−k−lzl

∑
`≥0

(`+ 1 + j)l
v`+j

z`+j+1+l

=

M+k+n∑
j=0

rj,nz
j−m+k

m−k∑
l=0

(
m− k
l

)
(−j)m−k−lzl

[
(−1)l+1S

(l)
V (z)−

j−1∑
i=0

(i+ 1)l
vi

zi+1+l

]

=

M+k+n∑
j=0

rj,nz
j−m+k+l

m−k∑
l=0

(
m− k
l

)
(−1)m−k−l(j −m+ k+ l+ 1)m−k−l(−1)l+1S

(l)
V (z)

−
M+k+n∑
j=0

rj,nz
j−m+k

j−1∑
i=0

(i+1−j)m−k
vi
zi+1

= (−1)m−k+1
m−k∑
l=0

(
m− k
l

)
φ
(m−k−l)
M+k+n (z)S

(l)
V (z)

−
M+k+n−1∑

j=0

rj+1,n

j∑
i=0

(−1)m−k ((j − i)−m+ k + 1)m−k viz
j−i−m+k

= (−1)m−k−1 [φM+k+n(z)SV(z)]
(m−k)

+ (−1)m−k−1 (Vθ0φM+k+n)
(m−k)

(z),

(taking in account that (a+ b)n =
∑n
k=0

(
n
k

)
(a)n−k(b)k and (−a)n = (−1)n(a−n+ 1)n).

The right hand side becomes

∑
i≥0

N+m+n∑
j=0

tj,nui+j

 z−(i+1) =

N+m+n∑
j=0

tj,nz
j

[
−SU (z)−

j−1∑
i=0

ui
zi+1

]
= −ψN+m+n(z)SU (z)− (Uθ0ψN+m+n) (z).

Therefore, (3.11) follows. On the other hand, from (3.11) for n and n+ 1, we can obtain
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ψN+m+n+1(z) [φM+k+n(z)SV(z)]
(m−k) − ψN+m+n(z) [φM+k+n+1(z)SV(z)]

(m−k)

= ψN+m+n(z)An+1(z)− ψN+m+n+1(z)An(z), n ≥ 0.

Thus, using the Leibniz rule, (3.12) holds.

Remark 3.7. We can get SV if we solve (formally) any differential equation in (3.12).
As a consequence, from (3.11) we can also obtain SU .

4. Sobolev OP’s and (M,N)-Coherent Pairs of Order m of Measures

In the sequel, P will denote the linear space of polynomials with real coefficients. We
also assume that U and V are positive definite linear functionals and, µ0 and µ1 are their
respective positive Borel measures supported on the real line. Besides, we consider the
Sobolev inner product

〈p(x), q(x)〉λ =

∫
R
p(x)q(x)dµ0 + λ

∫
R
p(m)(x)q(m)(x)dµ1, p, q ∈ P, λ > 0,m ∈ Z+,

(4.1)
and its corresponding SMOP {Sn(x;λ)}n≥0. The completion of P with respect to the

norm ‖ · ‖λ := 〈· , ·〉1/2λ yields the appropriate Sobolev space of functions. Notice that
(4.1) can be rewritten as

〈p(x), q(x)〉λ := 〈p(x), q(x)〉µ0
+ λ〈p(m)(x), q(m)(x)〉µ1

,

where 〈· , ·〉µi is the inner product induced by dµi, i = 0, 1.

Remark 4.1. If {Pn(x)}n≥0, {Qn(x)}n≥0 and {Sn(x;λ)}n≥0 are the SMOP with respect
to µ0, µ1 and 〈· , ·〉λ, respectively, then

Qn(x) = P [m]
n (x) +

n−1∑
j=0

(j + 1)m
(n+ 1)m

〈Tn+m(x), Pj+m(x)〉µ0

‖Pj+m‖2µ0

P
[m]
j (x), n ≥ 0, (4.2)

Sn(x;λ) +
n−1∑
i=m

〈Tn(x), Si(x;λ)〉µ0

‖Si‖2λ
Si(x;λ) = Pn(x) +

n−1∑
i=m

〈Tn(x), Pi(x)〉µ0

‖Pi‖2µ0

Pi(x), (4.3)

for n ≥ m, and Sn(x;λ) = Pn(x) for n ≤ m, hold, where

Tn(x) = lim
λ−→∞

Sn(x;λ) , n ≥ 0. (4.4)

Proof. From (4.1), 〈Pn(x), xi〉λ = 0, for i < n < m, and then Sn(x;λ) = Pn(x) for
n < m. Besides, the coefficients of the Sobolev MOP’s Sn(x;λ) are rational functions
of λ, more precisely, their numerator and denominator are polynomials in λ of the same
degree. Indeed, from the uniqueness of SMOP with respect to the bilinear functional W
associated with the Sobolev inner product 〈·, ·〉λ, every Sn(x;λ) can be written as

Sn(x;λ) =
1

det
(
[wi,j ]

n−1
i,j=0

)
∣∣∣∣∣∣∣∣∣

w0,0 · · · w0,n−1 w0,n

...
. . .

...
...

wn−1,0 · · · wn−1,n−1 wn−1,n
1 · · · xn−1 xn

∣∣∣∣∣∣∣∣∣ , n ≥ 1, S0(x;λ) = 1,
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where wi,j = 〈xi, xj〉λ = ui+j + λ(i −m + 1)m(j −m + 1)mv(i−m)+(j−m), for i, j ≥ 0.
Additionally, notice that [wi,j ]

n
i,j=0 is a symmetric matrix for n ≥ m, and it is a Hankel

matrix for n < m (it is the Hankel matrix associated with U). Thus, there exist the
monic polynomials given by (4.4). From (4.4) and (4.1) it follows that, for n ≥ 0,

〈Tn(x), xi〉µ0
= 0, i < min{n,m}, 〈T (m)

n (x), xj〉µ1
= 0, j < n−m. (4.5)

Hence, from (4.5) we get

Tn(x) =

n∑
i=0

〈Tn(x), Pi(x)〉µ0

‖Pi‖2µ0

Pi(x) =

n−m∑
j=0

〈Tn(x), Pj+m(x)〉µ0

‖Pj+m‖2µ0

Pj+m(x), n ≥ m,

T
(m)
n+m(x)

(n+ 1)m
=

n∑
i=0

〈T (m)
n+m(x)/(n+ 1)m, Qi(x)〉µ1

‖Qi‖2µ1

Qi(x) = Qn(x), n ≥ 0, (4.6)

and therefore (4.2) follows. On the other hand, from (4.1) and (4.5) we obtain

Tn(x) =

n∑
i=0

〈Tn(x), Si(x;λ)〉λ
‖Si‖2λ

Si(x;λ) = Sn(x;λ) +

n−1∑
i=m

〈Tn(x), Si(x;λ)〉µ0

‖Si‖2λ
Si(x;λ),

for n ≥ 0, and, as a consequence, (4.3) holds.

Recall that the pair of measures (µ0, µ1) is said to be a (M,N)-coherent pair of
order m if it is a (M,N)-coherent pair of order (m, 0), i.e, if their corresponding SMOP
{Pn(x)}n≥0 and {Qn(x)}n≥0 satisfy

P [m]
n (x) +

M∑
i=1

ai,nP
[m]
n−i(x) = Qn(x) +

N∑
i=1

bi,nQn−i(x), n ≥ 0, (4.7)

where ai,n and bi,n are complex numbers such that aM,n 6= 0 if n ≥ M , bN,n 6= 0 if
n ≥ N , and ai,n = bi,n = 0 when i > n.

The following Theorem extends a fundamental algebraic property known for (1, 0)-
coherent, (2, 0)-coherent, (k + 1, 0)-coherent, (1, 1)-coherent and (M,N)-coherent pairs
of measures of order 1, (stated in [7, 9, 14, 16, 18]), to (M,N)-coherent pairs of order m.

Theorem 4.2. Let (µ0, µ1) be a (M,N)-coherent pair of order m given by (4.7), and
K = max{M,N}. Then, Sn(x;λ) = Pn(x) for n < m and

Pn+m(x) +

M∑
i=1

(n+ 1)mai,n
(n− i+ 1)m

Pn−i+m(x) = Sn+m(x;λ) +

K∑
j=1

cj,n,λSn−j+m(x;λ), n ≥ 0,

(4.8)
where cj,n,λ = 0 for n < j ≤ K, and

cj,n,λ =
(n+ 1)m
‖Sn−j+m‖2λ

[
M∑
i=j

ai,n
(n− i+ 1)m

〈Pn−i+m(x), Sn−j+m(x;λ)〉µ0

+ λ

N∑
i=j

bi,n

〈
Qn−i(x), S

(m)
n−j+m(x;λ)

〉
µ1

]
, 1 ≤ j ≤ K. (4.9)

Furthermore, for every n ≥ K,
13



(i) if M > N and aM,n 6= 0, then cK,n,λ 6= 0,

(ii) if M < N and bN,n 6= 0, then cK,n,λ 6= 0,

(iii) if M = N(= K) and aM,nbN,n 6= 0 then,

cK,n,λ 6= 0 iff aK,n‖Pn−K+m‖2µ0
+ λ(n−K + 1)2mbK,n‖Qn−K‖2µ1

6= 0.

Conversely, if (4.8) holds for some constants {cj,n,λ}n≥0, 1 ≤ j ≤ K, and {ai,n}n≥0,
1 ≤ i ≤M , such that cj,n,λ = 0, when n− j +m < 0, and ai,n = 0, when n− i+m < 0,
then (µ0, µ1) is a (M,K)-coherent pair of order m given by

P [m]
n (x) +

M∑
i=1

ai,nP
[m]
n−i(x) = Qn(x) +

K∑
j=1

bj,nQn−j(x), n ≥ 0, (4.10)

where bj,n = 0 for n < j ≤ K, and

bj,n =

〈
P

[m]
n (x) +

∑M
i=1 ai,nP

[m]
n−i(x), Qn−j(x)

〉
µ1

‖Qn−j‖2µ1

, 1 ≤ j ≤ min{K,n} , n ≥ 0 ,

(4.11)
provided that the conditions bK,n 6= 0 hold for all n ≥ K.

Proof. Since 〈Pn(x), xi〉λ = 0 for i < n < m, then Sn(x;λ) = Pn(x) for n < m. On
the other hand, substituting (4.6) in (4.7), and integrating m times both sides of the
resulting equation, we get

Pn+m(x)

(n+ 1)m
+

M∑
i=1

ai,n
Pn−i+m(x)

(n− i+ 1)m
=
Tn+m(x)

(n+ 1)m
+

N∑
i=1

bi,n
Tn−i+m(x)

(n− i+ 1)m
+

m−1∑
j=0

κn,jx
j , n ≥ 0.

Applying 〈 · , xi〉µ0
, i < m, and taking into account (4.5), we obtain for every fixed n ≥ 0,

the system of linear equations
∑m−1
j=0 κn,juj+i = 0 for i = 0, . . . ,m − 1. Thus, taking

into account that det
(
[ui+j ]

m−1
i,j=0

)
6= 0, then κn,j = 0, for j = 0, . . . ,m − 1 and n ≥ 0.

Therefore

Pn+m(x)

(n+ 1)m
+

M∑
i=1

ai,n
Pn−i+m(x)

(n− i+ 1)m
=
Tn+m(x)

(n+ 1)m
+

N∑
i=1

bi,n
Tn−i+m(x)

(n− i+ 1)m
, n ≥ 0. (4.12)

On the other hand,

Tn+m(x)

(n+ 1)m
+

N∑
i=1

bi,n
Tn−i+m(x)

(n− i+ 1)m
=
Sn+m(x;λ)

(n+ 1)m
+

n+m∑
j=1

cj,n,λ
(n+ 1)m

Sn−j+m(x;λ), n ≥ 0,

where from (4.1), (4.12) and (4.6), for 1 ≤ j ≤ n+m,

‖Sn−j+m‖2λ
cj,n,λ

(n+ 1)m
=

M∑
i=1

ai,n
(n− i+ 1)m

〈Pn−i+m(x), Sn−j+m(x;λ)〉µ0
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+ λ

N∑
i=1

bi,n

〈
Qn−i(x), S

(m)
n−j+m(x;λ)

〉
µ1

,

then cj,n,λ = 0 for j > i or j > max{M,N} = K. Therefore, (4.8) and (4.9) hold.
Besides, for n ≥ K,

cK,n,λ
(n+ 1)m

=

aM,n
(n−M+1)m

‖Pn−M+m‖2µ0
δM,K + λ(n−N + 1)mbN,n‖Qn−N‖2µ1

δN,K

‖Sn−K+m‖2λ
,

from which (i), (ii) and (iii) are deduced.
Finally, applying 〈 · , p(x)〉λ to both sides of (4.8), for any p ∈ Pn−K+m−1, we get

0 = λ

〈
P

(m)
n+m(x) +

M∑
i=1

(n+ 1)mai,n
(n− i+ 1)m

P
(m)
n−i+m(x), p(m)(x)

〉
µ1

, ∀ p ∈ Pn−K+m−1,

i.e.,

0 =

〈
P [m]
n (x) +

M∑
i=1

ai,nP
[m]
n−i(x), q(x)

〉
µ1

, ∀ q ∈ Pn−K−1.

Besides,

P [m]
n (x) +

M∑
i=1

ai,nP
[m]
n−i(x) = Qn(x) +

n∑
j=1

bj,nQn−j(x), n ≥ 0,

where bj,n for 1 ≤ j ≤ n, is given by (4.11). Therefore, (4.10) follows.

Remark 4.3. Using Theorem 4.2, we can recursively compute the Sobolev SMOP
{Sn(x;λ)}n≥0 and the coefficients {cj,n,λ}n≥0, 1 ≤ j ≤ K, when µ0 and µ1 form a
(M,N)-coherent pair of order m and the coherence relation (4.7) is known. In the next
section, we will prove the Algorithm 5.5 which allows to compute the Sobolev norms
{‖Sn‖2λ}n≥0 and the coefficients {cj,n,λ}n≥0, 1 ≤ j ≤ K, and, as a consequence, from
(4.8) and Sn(x;λ) = Pn(x) for n < m, we can get the Sobolev SMOP {Sn(x;λ)}n≥0.

5. Computation of the Fourier-Sobolev Coefficients for (M,N)-Coherent Pairs
of Order m of Measures

Let I be a open interval of the real line and let Wm,2[I, µ0, µ1] be the Sobolev space
of smooth functions

Wm,2[I, µ0, µ1] =
{
f : I → R | f ∈ L2

µ0
(I) , f (m) ∈ L2

µ1
(I)
}
.

Every function f ∈ Wm,2[I, µ0, µ1] generates the following Fourier-Sobolev series with
respect to the Sobolev SMOP {Sn(x;λ)}n≥0,

f(x) ∼
∞∑
n=0

fn
sn

Sn(x;λ), (5.1)
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where

fn ≡ fn(λ) := 〈f(x), Sn(x;λ)〉λ, and sn ≡ sn(λ) := ‖Sn‖2λ, n ≥ 0. (5.2)

In [14], [17] and [16] an efficient algorithm for computing the Fourier-Sobolev co-
efficients fn/sn, n ≥ 0, when (µ0, µ1) is a (1, 0)-coherent, (2, 0)-coherent and (M,N)-
coherent pair of order 1, respectively, is done. Here we extend these algorithms to the
general case when (µ0, µ1) is a (M,N)-coherent pair of order m. For this purpose, first
we show how to compute the sequences {fn}n≥0 and {sn}n≥0, based on the algebraic
property stated in Theorem 4.2. Finally, the algorithm will be a consequence of these
results.

We use the following notation

ãi,n =
(n+ 1)m

(n− i+ 1)m
ai,n, and b̃i,n = (n+ 1)mbi,n, (5.3)

where ãi,n = b̃i,n = 0 when i > n, and ã0,n = 1 and b̃0,n = (n + 1)m for n ≥ 0, (since
ai,n = bi,n = 0 for i > n, and a0,n = b0,n = 1 for n ≥ 0).

Theorem 5.1. Let (µ0, µ1) be a (M,N)-coherent pair of order m given by (4.7), and
K = max{M,N}. Then the sequence {fn}n≥0, given by (5.2), satisfies the following
non-homogeneous linear difference equation of order K

fn+m +

K∑
j=1

cj,n,λfn−j+m = %n, n ≥ 0, (5.4)

where cj,n,λ is given by (4.9) and %n ≡ %n(λ; f) is defined by

%n =

〈
f(x),

M∑
i=0

ãi,nPn−i+m(x)

〉
µ0

+ λ

〈
f (m)(x),

N∑
i=0

b̃i,nQn−i(x)

〉
µ1

. (5.5)

Proof. Applying 〈f(x), · 〉λ to both sides of (4.8) and using (4.1), (4.7), and (5.3), we get
the desired result.

Now, we will show that the coefficients {cj,n,λ}n≥0, 1 ≤ j ≤ K, together with the
Sobolev norms {sn}n≥0 satisfy the system of K+1 difference equations given by (5.6) and
(5.9), with initial conditions sn = ‖Pn‖2µ0

, 0 ≤ n < m, and cj,n,λ = 0, 0 ≤ n < j ≤ K,
from which they can be computed. Besides, since the sequence {%n}n≥0 can be directly
computed in terms of the data (the (M,N)-coherence relation (4.7), the parameter λ,
and the function f), then using (5.4), we can recursively compute the sequence {fn}n≥0.
Thus, the sequences {fn}n≥0 and {sn}n≥0 will be deduced and therefore we get the
Fourier-Sobolev coefficients {fn/sn}n≥0.

Theorem 5.2. The following relations hold

sn−K+`+mcK−`,n,λ +
∑̀
i=1

ci,n−K+`,λcK−`+i,n,λsn−K+`−i+m = ζ`,n,λ, 0 ≤ ` ≤ K,n ≥ 0,

(5.6)
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where cj,n,λ = 0 for n < j ≤ K, and

ζ`,n,λ =

M∑
i=K−`

ãi,nãi−K+`,n−K+`‖Pn−i+m‖2µ0
+ λ

N∑
i=K−`

b̃i,nb̃i−K+`,n−K+`‖Qn−i‖2µ1
.

(5.7)

Proof. From (4.8), (4.7) and taking into account (5.3), for j = K − ` and 0 ≤ ` ≤ K,
n ≥ 0, (4.9) becomes

sn−K+`+mcK−`,n,λ =

M∑
i=K−`

M∑
j=0

ãi,nãj,n−K+` 〈Pn−i+m(x), Pn−K+`−j+m(x)〉µ0

−
M∑

i=K−`

K∑
j=1

ãi,ncj,n−K+`,λ 〈Pn−i+m(x), Sn−K+`−j+m(x;λ)〉µ0

+ λ
N∑

i=K−`

N∑
j=0

b̃i,nb̃j,n−K+` 〈Qn−i(x), Qn−K+`−j(x)〉µ1

− λ
N∑

i=K−`

K∑
j=1

b̃i,ncj,n−K+`,λ

〈
Qn−i(x), S

(m)
n−K+`−j+m(x;λ)

〉
µ1

.

(5.8)
Notice that, from orthogonality, the first and the third terms in the right-hand side of
(5.8) are equal to

M∑
i=K−`

ãi,nãi−K+`,n−K+`‖Pn−i+m‖2µ0
and λ

N∑
i=K−`

b̃i,nb̃i−K+`,n−K+`‖Qn−i‖2µ1
,

respectively. On the other hand, the second and the fourth terms are equal to

−
∑̀
j=1

cj,n−K+`,λ

M∑
i=K−`+j

ãi,n〈Pn−i+m(x), Sn−K+`−j+m(x;λ)〉µ0
and

−λ
∑̀
j=1

cj,n−K+`,λ

N∑
i=K−`+j

b̃i,n〈Qn−i(x), S
(m)
n−K+`−j+m(x;λ)〉µ1 ,

respectively. Indeed, since 〈Pn−i+m(x), Sn−K+`−j+m(x;λ)〉µ0
= 0 if i < K − ` + j or if

K − `+ j > M (because i ≤M), then the second term in (5.8) is equal to

M−K+`∑
j=1

M∑
i=K−`+j

ãi,ncj,n−K+`,λ 〈Pn−i+m(x), Sn−K+`−j+m(x;λ)〉µ0

=
∑̀
j=1

M∑
i=K−`+j

ãi,ncj,n−K+`,λ 〈Pn−i+m(x), Sn−K+`−j+m(x;λ)〉µ0
,

where the last equality follows from
∑`
j=M−K+`+1

∑M
i=K−`+j ( · ) = 0. In the same

way we can obtain the fourth term. Furthermore, notice that from (4.9) the sum of the
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second and the fourth terms is −
∑`
j=1 cj,n−K+`,λsn−K+`−j+mcK−`+j,n,λ. Therefore, 5.6

follows.

Corollary 5.3. The sequence {sn}n≥0 satisfies the non-homogeneous linear difference
equation of order K

sn+m +

K∑
i=1

c2i,n,λsn−i+m = ζK,n,λ, n ≥ 0, (5.9)

where cj,n,λ = 0 for n < j ≤ K, and

ζK,n,λ =

M∑
i=0

ã2i,n‖Pn−i+m‖2µ0
+ λ

N∑
i=0

b̃2i,n‖Qn−i‖2µ1
.

Proof. The proof is a straightforward consequence of (5.6) for ` = K (since (4.8) and
(4.9) hold taking c0,n,λ = 1 for n ≥ 0).

Additionally, from the (M,N)-coherence of order m, we can find bounds for {sn}n≥0,
the norms of the Sobolev SMOP {Sn(x;λ)}n≥0, as follows

Corollary 5.4. For n ≥ m, the following inequalities hold

‖Pn‖2µ0
+λ(n+1−m)2m‖Qn−m‖2µ1

≤ sn ≤
M∑
i=0

ã2i,n−m‖Pn−i‖2µ0
+λ

N∑
i=0

b̃2i,n−m‖Qn−m−i‖2µ1
.

(5.10)

Proof. From the extremal properties for monic Sobolev orthogonal and standard poly-

nomials we get sn = ‖Sn‖2µ0
+ λ‖S(m)

n ‖2µ1
≥ ‖Pn‖2µ0

+ λ(n + 1 − m)2m‖Qn−m‖2µ1
, for

n ≥ 0. On the other hand, from (5.9) and since ζK,n,λ > 0 for every n ≥ 0, it follows
that sn+m ≤ ζK,n,λ, for n ≥ 0. Substituting n by n−m, the proof is complete.

Finally, substituting in (5.6) ` by K − j and n by n+ j, we get

sn+mcj,n+j,λ = ζK−j,n+j,λ −
K−j∑
i=1

ci,n,λcj+i,n+j,λsn+m−i, 0 ≤ j ≤ K,n ≥ 0. (5.11)

These previous equations, ‖Sn‖λ = ‖Pn‖µ0
for n < m, and cj,n,λ = 0 for n < j ≤ K, allow

us to compute all the Sobolev norms {sn}n≥0 as well as all the coefficients {cj,n,λ}n≥0,
1 ≤ j ≤ K, in the algebraic relation (4.8), as it is shown in the following algorithm.
Additionally, using (5.4) and fn = 〈f(x), Pn(x)〉µ0 for n < m, we can compute the
coefficients {fn}n≥0. Finally, as a consequence, it is possible to compute the Fourier-
Sobolev coefficients {fn/sn}n≥0 appearing in (5.1), for any function f ∈Wm,2[I, µ0, µ1].

Algorithm 5.5. This algorithm allows us to compute the Fourier-Sobolev coefficients
{~n,λ = fn/sn}n≥0 in (5.1) for a given function f ∈ Wm,2[I, µ0, µ1], as well as the
coefficients {cj,n,λ}n≥0, 1 ≤ j ≤ K, in (4.8), when (µ0, µ1) is a (M,N)-coherent pair of
order m given by (4.7).
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• Starting Data: The initial conditions are K = max{M,N} and

cj,n,λ = 0, j > K or n < j ≤ K,n ≥ 0; c0,n,λ = 1, n ≥ 0;

sn = ‖Pn‖2µ0
, fn = 〈f(x), Pn(x)〉µ0 , ~n,λ = fn/sn, 0 ≤ n < m.

Furthermore, we must take in account the expression for %n and ζj,n,λ, 0 ≤ j ≤ K,
and n ≥ 0, given by (5.5) and (5.7), respectively. (See also (5.3)).

• Step n, for every n ≥ 0 fixed: From the Starting Data and the information obtained
in the Steps 1 to n− 1, we can compute

(i) sm+n from (5.11) taking j = 0, and the elements cj,n+j,λ for j = 1, · · · ,K,

(ii) fm+n from (5.4),

(iii) and the Fourier-Sobolev coefficient ~n,λ

as follows

sm+n = ζK,n,λ −
min{K,n}∑

i=1

c2i,n,λsm+n−i;

cj,n+j,λ =

ζK−j,n+j,λ − min{K−j,n}∑
i=1

ci,n,λci+j,n+j,λsm+n−i

 /sm+n, 1 ≤ j ≤ K;

fm+n = %n −
min{K,n}∑

i=1

ci,n,λfm+n−i;

~m+n,λ = fm+n/sm+n.

Remark 5.6. Notice that the computation of the Sobolev norms {sm+n}n≥0 and the
coefficients {cj,n+j,λ}n≥0, 1 ≤ j ≤ K, obeys the scheme illustrated by the following
matrix with K + 1 rows and infinitely many columns, where the computation must be
done successively along the decreasing diagonals

sm sm+1 sm+2 · · ·
0 c1,1,λ c1,2,λ c1,3,λ · · ·
0 0 c2,2,λ c2,3,λ c2,4,λ · · ·
...

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 0 cK,K,λ cK,K+1,λ cK,K+2,λ · · ·


Remark 5.7. As a consequence of the Algorithm 5.5, the computation of the Fourier-
Sobolev coefficients does not need to know explicitly the Sobolev SMOP {Sn(x;λ)}n≥0,
when (µ0, µ1) is a (M,N)-coherent pair of order m. However, to get the Fourier-Sobolev
series, we can recursively compute the Sobolev SMOP using (4.8) and Sn(x;λ) = Pn(x)
for n < m, because the Sobolev norms {sm+n}n≥0 and the coefficients {cj,n+j,λ}n≥0,
1 ≤ j ≤ K, already were obtained from the Algorithm 5.5.
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5.1. Two Special Cases

Some sequences involved in Algorithm 5.5 satisfy additional properties when (µ0, µ1)
is a (1, 1)-coherent or (1, 0)-coherent pair of order m.

Theorem 5.8. Let (µ0, µ1) be a (1, 1)-coherent pair of order m with corresponding pair
of SMOP ({Pn(x)}n≥0, {Qn(x)}n≥0), given by

P [m]
n (x) + a1,nP

[m]
n−1(x) = Qn(x) + b1,nQn−1(x), n ≥ 0,

where a1,0 = b1,0 = 0. Then,

(i) The Sobolev SMOP with respect to the inner product (4.1), {Sn(x;λ)}n≥0, satisfies
Sn(x;λ) = Pn(x) for n < m, and

Pm+n(x) +
m+ n

n
a1,nPm+n−1(x) = Sm+n(x;λ) + c1,n,λSm+n−1(x;λ), n ≥ 0,

(5.12)
where c1,0,λ = 0 and

c1,n,λsm+n−1 =
m+ n

n
a1,n‖Pm+n−1‖2µ0

+ λ(n)m(n+ 1)mb1,n‖Qn−1‖2µ1
.

(ii) The sequences of Sobolev norms {sn}n≥0 with sn = ‖Sn‖2λ and constants {c1,n,λ}n≥0
in (5.12) can be computed by

sm+n+1 = ζ1,n+1,λ −
ζ20,n+1,λ

sm+n
and

ζ0,n+1,λ

c1,n+1,λ
= ζ1,n,λ − ζ0,n,λc1,n,λ, n ≥ 0,

(5.13)
(the above equation holds if ζ0,n+1,λ 6= 0 for n ≥ 0), and c1,n+1,λ = ζ0,n+1,λ/sn+m,
n ≥ 0, holds, with initial conditions c1,0,λ = 0, sm = ζ1,0,λ, and sn = ‖Pn‖µ0 for
n < m, where

ζ0,n,λ =
n+m

n
a1,n‖Pm+n−1‖2µ0

+ λ(n)m(n+ 1)mb1,n‖Qn−1‖2µ1
, (5.14)

ζ1,n,λ = ‖Pn+m‖2µ0
+

(n+m)2

n2
a21,n‖Pn+m−1‖2µ0

+ λ(n+ 1)2m
[
‖Qn‖2µ1

+ b21,n‖Qn−1‖2µ1

]
.

Furthermore, lower and upper bounds for sn, n ≥ 0, are given in (5.10) by taking
M = N = 1.

(iii) If ζ0,n+1,λ 6= 0 for n ≥ 0, then every Sobolev norm sm+n for n ≥ 0, and each
constant c1,n,λ for n ≥ 1, can be represented, respectively, by the continued fraction

sm+n =
ζ20,n+1,λ

|ζ1,n+1,λ
−
ζ20,n+2,λ|
|ζ1,n+2,λ

− · · · , n ≥ 0,

c1,n,λ =
ζ1,n,λ
ζ0,n,λ

−
ζ0,n+1,λ

ζ0,n,λ∣∣∣ ζ1,n+1,λ

ζ0,n+1,λ

−
ζ0,n+2,λ

ζ0,n+1,λ

∣∣∣∣∣∣ ζ1,n+2,λ

ζ0,n+2,λ

− · · · , n ≥ 1.
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(iv) If ζ0,n+1,λ 6= 0 for n ≥ 0, then the Sobolev norms {sn}n≥0 and the constants
{c1,n,λ}n≥0 in (5.12) are

sm+n =
$n+1(0;λ)

$n(0;λ)
, c1,n+1,λ = ζ0,n+1,λ

$n(0;λ)

$n+1(0;λ)
, n ≥ 0, (5.15)

where {$n(x;λ)}n≥0 is a SMOP with respect to some positive definite linear func-
tional, satisfying the TTRR: $0(x;λ) = 1, $−1(x;λ) = 0,

$n+1(x;λ) = (x+ ζ1,n,λ)$n(x;λ)− ζ20,n,λ$n−1(x;λ), n ≥ 0. (5.16)

(v) Let f ∈ Wm,2[I, µ0, µ1] and let
∑∞
n=0

fn
sn
Sn(x;λ) be its Fourier-Sobolev series.

Then, the Fourier-Sobolev coefficients {fn/sn}n≥0 can be computed using (5.13)
and fm+n = %n− c1,n,λfm+n−1, n ≥ 0, where %n is given by (5.5) taking M = N =
1.

Proof. (i) It is immediate from Theorem 4.2.
(ii) (5.11) becomes sn+m = ζ1,n,λ − c21,n,λsn+m−1 and sn+mc1,n+1,λ = ζ0,n+1,λ, for

n ≥ 0. As a consequence, (5.13) holds. (5.14) follows from (5.3) and (5.7).
(iii) (5.13) becomes

sm+n =
ζ20,n+1,λ

ζ1,n+1,λ − sm+n+1
, n ≥ 0, c1,n,λ =

ζ1,n,λ
ζ0,n,λ

−
ζ0,n+1,λ

ζ0,n,λ

c1,n+1,λ
, n ≥ 1, c1,1,λ =

ζ0,1,λ
ζ1,0,λ

.

(iv) From the theory of continued fractions, we can define the sequence {$n,λ}n≥0
by $0,λ = 1 and $n+1,λ = sm+n$n,λ for n ≥ 0, and, as a consequence, the first equation
in (5.13) becomes

$n+2,λ = ζ1,n+1,λ$n+1,λ − ζ20,n+1,λ$n,λ, n ≥ 0, $1,λ = ζ1,0,λ, $0,λ = 1.

Thus, since ζ0,n+1,λ 6= 0 for n ≥ 0, from Favard Theorem there exists a sequence of monic
polynomials {$n(x;λ)}n≥0 such that $n(0;λ) = $n,λ for n ≥ 0, that is orthogonal with
respect to some positive definite linear functional because ζ1,n,λ, ζ0,n+1,λ ∈ R for n ≥ 0.
Furthermore, since $n,λ 6= 0 for n ≥ 0, then (5.15) follows.

(v) It is a straightforward consequence of (5.4).

Remark 5.9. Similarly to Theorem 5.8.iv., from second equation in (5.13) we can define

recurrently the sequence θn+1,λ =
ζ0,n+1,λ/ζ0,n,λ

c1,n+1,λ
θn,λ, n ≥ 1, θ1,λ =

ζ0,1,λ
c1,1,λ

θ0,λ and θ0,λ = 1,

and, as a consequence, it becomes θ0,λ = 1, θ1,λ = ζ1,0,λ,

θ2,λ =
ζ1,1,λ
ζ0,1,λ

θ1,λ − ζ0,1,λθ0,λ, θn+1,λ =
ζ1,n,λ
ζ0,n,λ

θn,λ −
ζ0,n,λ
ζ0,n−1,λ

θn−1,λ, n ≥ 2.

Therefore, if ζ0,n,λ 6= 0 for n ≥ 1, from Favard Theorem there exists a SMOP {θn(x;λ)}n≥0
which satisfies the TTRR

θn+1(x;λ) =

(
x+

ζ1,n,λ
ζ0,n,λ

)
θn(x;λ)− ζ0,n,λ

ζ0,n−1,λ
θn−1(x;λ), n ≥ 2,
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θ2(x;λ) =

(
x+

ζ1,1,λ
ζ0,1,λ

)
θ1(x;λ)− ζ0,1,λθ0(x;λ), θ1(x;λ) = x+ ζ1,0,λ, θ0(x;λ) = 1,

with θn(0;λ) = θn,λ for n ≥ 0, and it is orthogonal with respect to some regular linear
functional which is positive definite if ζ0,n,λ > 0 for n ≥ 1. Besides, since θn,λ 6= 0 for

n ≥ 0, then c1,1,λ = ζ0,1,λ
θ0(0;λ)
θ1(0;λ)

and

c1,n+1,λ =
ζ0,n+1,λ

ζ0,n,λ

θn(0;λ)

θn+1(0;λ)
, sm+n = ζ0,n,λ

θn+1(0;λ)

θn(0;λ)
, n ≥ 1.

Remark 5.10. When (µ0, µ1) is a (1, 0)-coherent pair of order m, the previous Theorem
holds taking b1,n = 0, for n ≥ 0. Besides, notice that for n ≥ 0, ζ0,n,λ and ζ1,n,λ become
a constant and a linear function of λ, respectively, and as a consequence, from (5.16)
and by induction on n, $n(0;λ) is a polynomial in λ of degree n with leading coefficient∏n−1
i=0 (i+ 1)2m‖Qi‖2µ1

, for n ≥ 1. Thus, (5.16) reads

$̃n+1(λ) = (λ+ αn)$̃n(λ)− βn$̃n−1(λ), n ≥ 0, $̃0(λ) = 1, (5.17)

where $̃n(λ) is the monic polynomial $n(0;λ)/(
∏n−1
i=0 (i + 1)2m‖Qi‖2µ1

), n ≥ 1, α0 =
‖Pm‖2µ0

/[(1)2m‖Q0‖2µ1
], β0 = 0, and

αn =
‖Pn+m‖2µ0

+ (n+m)2

n2 a21,n‖Pn+m−1‖2µ0

(n+ 1)2m‖Qn‖2µ1

, βn =
a21,n‖Pm+n−1‖4µ0

(n)4m‖Qn‖2µ1
‖Qn−1‖2µ1

, n ≥ 1.

Therefore, if a1,n 6= 0 for n ≥ 1, then the Sobolev norms {sn}n≥0 and the constants
{c1,n,λ}n≥0 in (5.12) satisfy

sm+n = κn
$̃n+1(λ)

$̃n(λ)
, n ≥ 0, c1,n,λ = κ̃n

$̃n−1(λ)

$̃n(λ)
, n ≥ 1,

with

κn = (n+ 1)2m‖Qn‖2µ1
, κ̃n = a1,n

(n+ 1)m
(n)3m

‖Pm+n−1‖2µ0

‖Qn−1‖2µ1

,

where {$̃n(λ)}n≥0 is a SMOP in λ with respect to some positive definite linear functional,
such that the TTRR (5.17) holds.

5.2. A Numerical Example

Now, we deal with a numerical example in order to illustrate our Algorithm 5.5.

Example 5.11. Let us consider the Jacobi weight dµα,β(x) := (1−x)α(1+x)βχ(−1,1)(x)dx,

α, β > −1. Let {P̂ (α,β)
n }n≥0 be its corresponding SMOP. From [25, Example 5.1] and

since

(
P̂

(α,β)
n+m (x)

)(m)

(n+1)m
= P̂

(α+m,β+m)
n (x) for n ≥ 0, it follows that

(
P̂

(α−3,β−4)
n+3 (x)

)′′′
(n+ 1)3

+ a1,n

(
P̂

(α−3,β−4)
n+2 (x)

)′′′
(n)3

+ a2,n

(
P̂

(α−3,β−4)
n+1 (x)

)′′′
(n− 1)3
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= P̂ (α−2,β)
n (x) + b1,nP̂

(α−2,β)
n−1 (x), n ≥ 0,

holds for α > 2 and β > 3, where

b1,n :=
2n(n+ α− 2)

(2n+ α+ β − 3)(2n+ α+ β − 2)
, a1,n := − 4n(n+ β − 1)

(2n+ α+ β − 1)(2n+ α+ β − 3)
,

a2,n :=
4n(n− 1)(n+ β − 2)(n+ β − 1)

(2n+ α+ β − 4)(2n+ α+ β − 3)2(2n+ α+ β − 2)
.

Thus, the measures dµ0 := dµα−3,β−4 and dµ1 := dµα−2,β form a (2, 1)-coherent pair of

order 3, with Pn(x) := P̂
(α−3,β−4)
n and Qn(x) := P̂

(α−2,β)
n , for α > 2 and β > 3.

With the help of MAPLE, we applied Algorithm 5.5 and Remark 5.7 to the function
f : [−1, 1] −→ R defined by

f(x) := e−3(x−
1
10 )

2

sin(10x),

in order to compute its Fourier-Sobolev coefficients with respect to the Sobolev SMOP as-
sociated with the inner product 〈g(x), h(x)〉λ =

∫∞
−∞ g(x)h(x)dµ0+λ

∫∞
−∞ g′′′(x)h′′′(x)dµ1,

defined by the (2, 1)-coherent pair of order 3, (µ0, µ1) ≡ (µ1,1, µ2,5), i.e., (α, β) = (4, 5).
This is possible because f ∈ L2

µ2
(−1, 1) and f ′′′ ∈ L2

µ1
(−1, 1).

For the choice λ = 0.1, Figures 5.1, 5.2, 5.3, and 5.4, simultaneously include plots of
f(x) and the partial sums of degree 30 of its Fourier-Jacobi and Fourier-Sobolev series,
of f ′(x) and of the derivatives of both the partial sums of degree 30 of the Fourier-Jacobi
and Fourier-Sobolev series of f(x), of f ′′(x) and of the second derivatives of both the
partial sums of degree 30 of the Fourier-Jacobi and Fourier-Sobolev series of f(x), and,
of f ′′′(x) and of the third derivatives of both the partial sums of degree 30 of the Fourier-
Jacobi and Fourier-Sobolev series of f(x), respectively, in the intervals [−1, 1], [0.9, 0.98],
[−1,−0.98] and [0.98, 1].

From them, there is a numerical evidence that the approximations for f(x) and its
derivatives f ′(x), f ′′(x), f ′′′(x), given by the partial sums of the Fourier-Sobolev series
and its derivatives are better than the corresponding approximations given by the Fourier-
Jacobi series and its derivatives. Indeed, Table 5.1 illustrates this statement, comparing

the errors ε
(i)
J,L2 , ε

(i)
J,µ0

, and E
(i)
J,λ, with the errors ε

(i)
S,L2 , ε

(i)
S,µ0

, and E
(i)
S,λ, respectively, given

by

ε
(i)
`,L2 := ‖f (i) − S(i)

30,`(f)‖2L2 =

∫ 1

−1
|f (i)(x)− S(i)

30,`(x; f)|2dx,

ε
(i)
`,µ0

:= ‖f (i) − S(i)
30,`(f)‖2µ0

=

∫ 1

−1

(
f (i)(x)− S(i)

30,`(x; f)
)2

(1− x2)dx,

E
(i)
`,λ := ‖f (i) − S(i)

30,`(f)‖2λ =

∫ 1

−1

(
f (i)(x)− S(i)

30,`(x; f)
)2

(1− x2)dx

+ (0.1)

∫ 1

−1

(
f (3+i)(x)− S(3+i)

30,` (x; f)
)2

(1− x)2(1 + x)5dx,

for i = 0, 1, 2, 3, and ` = J, S, when approaching the function f(x) (i = 0) and its
derivatives f (i)(x), i = 1, 2, 3, with the partial sums of degree 30 of the Fourier-Jacobi
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Figure 5.1: f(x) and the partial sums of degree 30 of its Fourier-Jacobi and Fourier-
Sobolev series
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Figure 5.2: f ′(x) and the derivatives of both the partial sums of degree 30 of the Fourier-
Jacobi and Fourier-Sobolev series of f(x)
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Figure 5.3: f ′′(x) and the second derivatives of both the partial sums of degree 30 of the
Fourier-Jacobi and Fourier-Sobolev series of f(x)
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Figure 5.4: f ′′′(x) and the third derivatives of both the partial sums of degree 30 of the
Fourier-Jacobi and Fourier-Sobolev series of f(x)
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Table 5.1: Errors of the approximations of f(x) (i = 0) and its derivatives (i = 1, 2, 3)
with the partial sums of degree 30 of the Fourier-Jacobi (J) and Fourier-Sobolev (S) series
of f(x) and their derivatives

(a) for the norm ‖ · ‖L2

i ε
(i)
J,L2 ε

(i)
S,L2

0 1.05× 10−7 1.33× 10−10

1 2.76× 10−3 2.61× 10−7

2 89.93 2.35× 10−3

3 1.65× 106 29.3

(b) for the norm ‖ · ‖µ0

i ε
(i)
J,µ0

ε
(i)
S,µ0

0 1.92× 10−9 1.85× 10−11

1 1.87× 10−5 3.93× 10−9

2 0.645 2.15× 10−5

3 14682.775 0.305

(c) for the norm ‖ · ‖λ=0.1

i E
(i)
J,λ E

(i)
S,λ

0 157.59 4.07× 10−6

1 2.54× 106 1.39× 10−3

2 2.62× 1010 4.3
3 1.822× 1014 63500.24

and Fourier-Sobolev series of f(x) and their derivatives, S
(i)
30,`(x; f), i = 1, 2, 3, ` = J, S,

for norms ‖ · ‖L2 , ‖ · ‖µ0 , and ‖ · ‖λ.
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