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1. Introduction

Let P be the linear space of polynomials with real coefficients and Pn be its linear
subspace of polynomials of degree at most n. The so-called Markov-type inequalities
provide estimates of the ratio of the norm of derivatives of a polynomial and the norm of
the polynomial itself. They constitute a basic tool in the proof of many inverse theorems
in polynomial approximation theory (cf. [24, 25, 32] and the references therein).

For every polynomial P ∈ Pn, the Markov inequality means that

‖P ′‖L∞([−1,1]) ≤ n2‖P‖L∞([−1,1])

holds. Chebyshev polynomials of the first kind are optimal, i.e., the above inequality
became an equality for such polynomials (see [8]).

In [15] the above inequality has been extended when you take into account the p norm
(p ≥ 1). Indeed, for every polynomial P ∈ Pn you get

‖P ′‖Lp([−1,1]) ≤ C(n, p)n2‖P‖Lp([−1,1]).

Therein the value of C(n, p) is explicitly given in terms of p and n. Furthermore, you

have an upper bound C(n, p) ≤ 6e1+1/e for n > 0 and p ≥ 1. In [13] admissible values for
C(n, p) and some computational results for p = 2 are given. Notice that for any p > 1
and every polynomial P ∈ Pn

‖P ′‖Lp([−1,1]) ≤ Cn2‖P‖Lp([−1,1]),

where C is explicitly given and it is less than the constant C(n, p) (see [15]).

On the other hand, from a matrix analysis approach, in [10] it is proved that the exact
value of C(n, 2) is, indeed, the greatest singular value of the matrixAn = [aj,k]0≤j≤n−1,0≤k≤n,

where aj,k =
∫ 1
−1 p

′
j(x)pk(x)dx and {pn}∞n=0 is the sequence of standard orthonormal Le-

gendre polynomials. A simple proof of this result, with an interpretation of the constant
C(n, 2) as the largest positive zero of a polynomial as well as an explicit expression of the
extremal polynomial (the polynomial such that the inequality becomes an equality) in the
L2-Markov inequality appears in [17].

For weighted L2-spaces, the analysis of such Markov-type inequalities becomes more
difficult. For instance, let ‖ · ‖L2((a,b),w) be a weighted L2-norm on P, given by

‖P‖L2((a,b),w) =

(∫ b

a
|P (x)|2w(x)dx

)1/2

,

where w is an integrable function on (a, b), −∞ ≤ a < b ≤ ∞, such that w > 0 a.e. on
(a, b) and all their moments

rn :=

∫ b

a
xnw(x)dx, n ≥ 0,



Lupaş-type inequality and applications to Markov-type inequalities in weighted Sobolev spaces 3

are finite. Then there exists a constant γn = γn(a, b, w) such that

(1.1) ‖P ′‖L2((a,b),w) ≤ γn‖P‖L2((a,b),w), for all P ∈ Pn.

An upper estimate for such a constant has been done in [3], when w(x) = (1 −
x2)λ−1/2, x ∈ [−1, 1], λ > −1/2; [4] improves this result with lower and upper estimates
for γn. More recently, [29] improves the above results.

Also, when we consider the weighted L2-norm associated with the Laguerre weight
w(x) := xαe−x, α > −1, in [0,∞), the inequality

(1.2) ‖P ′‖L2(w) ≤ Cαn ‖P‖L2(w), for all P ∈ Pn,

is proved in [5].

On the other hand, in [27] and [28] the study of lower and upper bounds of the sharp
constant in the above inequality is given by using analytic tools, while they have improved
with the assistance of computer algebra in [30].

There exist a lot of results on Markov-type inequalities (see, e.g., [11, 12, 24], and the
references therein). In connection with the research in the field of the weighted approx-
imation by polynomials, Markov-type inequalities have been studied for different norms
and sets over which the norm is taken (see, e.g., [23] and the references therein). More
recently, the study of asymptotic behavior of the sharp constant involved in some kind of
these inequalities have been done in [5] for Hermite, Laguerre and Gegenbauer weights,
and in [6] for Jacobi weights with parameters satisfying some constraints.

Notice that, from matrix analysis considerations, the sharp constant is the greatest

singular value of the matrix Bn = [bj,k]0≤j≤n−1,0≤k≤n, where bj,k =
∫ 1
−1 p

′
j(x)pk(x)w(x)dx

and {pn}∞n=0 is the orthonormal polynomial sequence with respect to the positive mea-
sure w(x)dx. Thus, from a computational point of view you need to find the connection
coefficients between the sequences {p′n}∞n=0 and {pn}∞n=0 in order to proceed with the com-
putation of the matrix. In a second step, you must give the greatest singular value of
the matrix Bn. Notice that for classical weights (Jacobi, Laguerre and Hermite), such
connection coefficients can be found in a simple way (see [1] and [31]).

In [26] it is proved that the best constant

γ∗n := sup
P∈Pn

{
‖P ′‖L2((a,b),w) : ‖P‖L2((a,b),w) = 1

}
in (1.1) satisfies

(1.3) γ∗n ≤

(
n∑
ν=1

ν‖p′ν‖2L2((a,b),w)

)1/2

.

The main interest of the above result is however qualitative, since the bound specified

by (1.3) can be very crude. In fact, when w(x) = e−x
2

on (−∞,∞), the estimate (1.3)
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becomes

γ∗n ≤

(
n∑
ν=1

2ν2

)1/2

=

√
1

3
n(n+ 1)(2n+ 1) = O

(
n3/2

)
.

The contrast between this estimate and the classic result of Schmidt [38], which establishes
γ∗n =

√
2n , is evident.

We must point out that the nature of the extremal problems associated with inequalities
(1.1) and (1.2) is different. In the first case the constant on the right-hand side of (1.1)
depends on n, while in the second one the multiplicative constant Cα on the right-hand
side of (1.2) is independent of n.

On the other hand, for a classical weight w, i.e., such that a Pearson equation (A(x)w(x))′ =
B(x)w(x) holds, where A,B are polynomials of degree at most 2 and 1, respectively, a
similar problem connected with the Markov-Bernstein inequality has been analyzed in [14]
and [16], when you try to determine the sharp constant C(n,m;w) such that

(1.4) ‖Am/2P (m)‖L2((a,b),w) ≤ C(n,m;w)‖P‖L2((a,b),w), for all P ∈ Pn.

Notice that in [16] the study of sharp constants is also studied for semiclassical weights
satisfying a Pearson equation (A(x)w(x))′ = B(x)w(x), where A,B are polynomials with
the constraint that deg(B) ≥ 1 and some boundary conditions on the support of the weight
are fulfilled.

An analogue of the Markov-Bernstein inequality for linear operators T from Pn into
P has been studied in [19] in terms of singular values of matrices. Some illustrative
examples when T is either the derivative (difference) operator with some classical weights
(Laguerre, Gegenbauer in the first case, Charlier, Meixner in the second one) are shown. In
particular, difference inequalities for discrete iterated classical weights have been studied
in [36]. Another recent application of Markov-Bernstein-type inequalities can be found in
[7].

In this contribution, we first focus our attention on a Markov type inequality involving
the L2-spaces associated with the Lebesgue measure and the beta probability measure
supported on [−1, 1] such that the corresponding sequences of orthogonal polynomials are
the Legendre and Jacobi polynomials, respectively.

Let us consider the Jacobi weight wα,β(x) = (1−x)α(1+x)β on [−1, 1], with α, β > −1.
Lupaş’ inequality [20] (see also [25, p.594]) gives

‖P‖L∞([−1,1]) ≤

√
Γ(n+ α+ β + 2)

2α+β+1Γ(q + 1)Γ(n+ q′ + 1)

(
n+ q + 1

n

)
‖P‖L2([−1,1],wα,β),

for every n ∈ N and P ∈ Pn, where q = max{α, β} ≥ −1/2 and q′ = min{α, β}.
By using Lupaş’ inequality and the asymptotic behavior of Gamma function, the authors

showed in [21] that there exists a constant c1(α, β), which just depends on α and β, such
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that

(1.5) ‖P‖L2([−1,1]) ≤ c1(α, β)(n+ 1)max{α,β}+1‖P‖L2([−1,1],wα,β),

for every n ∈ N and P ∈ Pn, when max{α, β} ≥ −1/2.

Inequality (1.5) is interesting by itself. It has been applied (see [21]) to obtain Markov-
type inequalities in weighted Sobolev spaces associated with vector of measures intimately
related with the classical weights (normal, gamma and beta distributions). The study of
properties of such functional spaces has been done in classical monographs as [2] and
[22], while [18] is a basic reference about weighted Sobolev spaces. In such a sense,
one of our aims is to study bounds for sharp constants for Markov inequalities in the
framework of such Sobolev spaces. Notice that Muckenhoupt inequality for three measures
and the connection with orthogonal polynomials associated with Sobolev inner products
has been given in [9]. Surveys about orthogonal polynomials in weighted Sobolev spaces
are presented in [33], [34], [35].

Our first goal is to improve inequality (1.5) (see Theorem 1.1 below) in two ways.

First, we replace the function c1(α, β)(n+ 1)max{α,β}+1 by a smallest one, and we remove
the hypothesis max{α, β} ≥ −1/2. As a consequence of Theorem 1.1, we improve some
Markov-type inequalities in weighted Sobolev spaces which appear in [21].

Theorem 1.1. For each α, β > −1 we have

(1.6) ‖P‖L2([−1,1]) ≤ Gα,β(n)‖P‖L2([−1,1],wα,β),

for every n ∈ N and P ∈ Pn, where

Gα,β(n) :=


Cα,β(n+ 1)max{α, β}, if max{α, β} > 1/2,

Cα,β
√

(n+ 1) log(n+ 2) , if max{α, β} = 1/2,

Cα,β
√
n+ 1 , if 0 < max{α, β} < 1/2,

Cα,β , if max{α, β} ≤ 0,

for some constant Cα,β which just depend on α and β.

Note that (1.6) improves (1.5) for every value of α and β, and Theorem 1.1 does not
have hypotheses on max{α, β}.

Remark 3.1 shows that inequality (1.6) is “almost sharp”.

2. Some technical lemmas

In order to make the proof of Theorem 1.1 more readable, we are collecting in this
section some technical lemmas that will be needed there.

Lemma 2.1. Let f be a function f : [m,n] → (0,∞) with m,n ∈ Z and n > m. If there
exists a constant M ≥ 1 with

1

M
≤ f(j)

f(j + s)
≤M
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for every j ∈ Z with m ≤ j < n and s ∈ [0, 1], then

1

M

∫ n

m
f ≤

n∑
j=m

f(j) ≤ 2M2

∫ n

m
f .

Proof. The hypothesis gives∫ j+1

j
f ≤

∫ j+1

j
Mf(j) = Mf(j),

and thus, ∫ n

m
f ≤M

n−1∑
j=m

f(j) ≤M
n∑

j=m

f(j).

The hypothesis also gives∫ j+1

j
f ≥

∫ j+1

j

1

M
f(j) =

1

M
f(j) ≥ 1

M2
f(j + 1),

and so, ∫ n

m
f ≥ 1

M

n−1∑
j=m

f(j),

∫ n

m
f ≥ 1

M2

n∑
j=m+1

f(j).

Hence, ∫ n

m
f ≥ 1

2

( 1

M2

n−1∑
j=m

f(j) +
1

M2

n∑
j=m+1

f(j)
)
≥ 1

2M2

n∑
j=m

f(j).

�

We also need the following direct result.

Lemma 2.2. Let f be a function f : [`, k] ∩ Z → (0,∞) with `, k ∈ Z. If there exists a
constant M ≥ 1 with

1

M
≤ f(j)

f(j + 1)
≤M

for every j ∈ Z with ` ≤ j < k, then

1

M + 1

k∑
j=`

f(j) ≤
k∑

j=`, j−` even
f(j) ≤

k∑
j=`

f(j).

By C we will denote a constant independent on n, k, j, `, which can depend just on α
and β, and can change its value from line to line and even in the same line. The expression
A � B means, as usual, that there exists a constant C such that C−1 ≤ A/B ≤ C.
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Lemma 2.3. Let a, b, β ≥ 0, and f ∈ L1[0, 1] with f > 0 a.e. in [0, 1]. Then∫ 1

0
(as+ b)βf(s) ds � (a+ b)β,

and the bounds of the quotient depend just on β and f .

Proof. Since f > 0 a.e. in [0, 1], we have∫ 1

0
(as+ b)βf(s) ds ≤ (a+ b)β

∫ 1

0
f(s) ds,∫ 1

0
(as+ b)βf(s) ds ≥

∫ 1

1/2
(as+ b)βf(s) ds ≥ (a/2 + b)β

∫ 1

1/2
f(s) ds ≥ C(β, f)(a+ b)β,

and the result holds. �

Lemma 2.4. Let α > β > 0 and `, k ∈ Z with 0 ≤ ` ≤ k. Then

k∑
j=`

(j + 1)β(j + 1− `)β−1(k + 1− j)α−β−1 � (k + 1)β(k − `+ 1)α−1.

Proof. Note that it suffices to consider the case ` < k.
Let us consider the function f : [`, k]→ (0,∞) given by

f(t) = (t+ 1)β(t+ 1− `)β−1(k + 1− t)α−β−1.

Since
1

2
≤ j + 1

j + s+ 1
≤ 1,

1

2
≤ j + 1− `
j + s+ 1− `

≤ 1,

1 ≤ k + 1− j
k + 1− j − s

≤ 2,

for every j ∈ Z with 0 ≤ ` ≤ j < k and s ∈ [0, 1], we have

1

2β
min

{ 1

2β−1
, 1
}

min
{

1, 2α−β−1
}
≤ (j + 1)β(j + 1− `)β−1(k + 1− j)α−β−1

(j + s+ 1)β(j + s+ 1− `)β−1(k + 1− j − s)α−β−1

≤ max
{ 1

2β−1
, 1
}

max
{

1, 2α−β−1
}
.

Therefore, since ` < k, Lemma 2.1 gives

k∑
j=`

(j+1)β(j+1−`)β−1(k+1−j)α−β−1 �
∫ k

`
(t+1)β(t+1−`)β−1(k+1−t)α−β−1dt =: I`,k.
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The change of variable s = (t− `+ 1)/(k − `+ 2) gives

I`,k =

∫ (k−`+1)/(k−`+2)

1/(k−`+2)

(
s(k − `+ 2) + `

)β(
s(k − `+ 2)

)β−1

·
(
(1− s)(k − `+ 2)

)α−β−1
(k − `+ 2) ds

� (k − `+ 2)α−1

∫ 1

0

(
s(k − `+ 2) + `

)β
sβ−1(1− s)α−β−1ds,

since β − 1 > −1 and α − β − 1 > −1, and so, fα,β(s) = sβ−1(1 − s)α−β−1 ∈ L1[0, 1].
Lemma 2.3 gives∫ 1

0

(
s(k − `+ 2) + `

)β
sβ−1(1− s)α−β−1ds � (k − `+ 2 + `)β � (k + 1)β.

Note that the bounds of the quotient depend just on α and β, since fα,β depends just on
these parameters. Hence,

I`,k � (k + 1)β(k − `+ 1)α−1.

�

Lemma 2.5. Let α > 0 and k ∈ N. Then

k∑
`=0

(`+ 1)(k − `+ 1)2α−2 �


(k + 1)2α, if α > 1/2,

(k + 1) log(k + 2), if α = 1/2,

k + 1, if α < 1/2.

Proof. Note that it suffices to consider the case k > 0.
Let us consider the function f : [0, k]→ (0,∞) given by

f(t) = (t+ 1)(k + 1− t)2α−2.

Since
1

2
≤ `+ 1

`+ s+ 1
≤ 1,

1 ≤ k + 1− `
k + 1− `− s

≤ 2,

for every ` ∈ Z with 0 ≤ ` < k and s ∈ [0, 1], we have

1

2
min

{
1, 22α−2

}
≤ (`+ 1)(k + 1− `)2α−2

(`+ s+ 1)(k + 1− `− s)2α−2
≤ max

{
1, 22α−2

}
.

Therefore, since k > 0, Lemma 2.1 gives

k∑
`=0

(`+ 1)(k − `+ 1)2α−2 �
∫ k

0
(t+ 1)(k + 1− t)2α−2dt =: Ik.
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The change of variable s = (t+ 1)/(k + 2) gives

Ik =

∫ (k+1)/(k+2)

1/(k+2)

(
s(k + 2)

)(
(1− s)(k + 2)

)2α−2
(k + 2) ds

� (k + 2)2α

∫ (k+1)/(k+2)

0
s (1− s)2α−2ds.

If α > 1/2, then s (1− s)2α−2 ∈ L1[0, 1] and

Ik � (k + 1)2α.

Assume that α = 1/2. Since

lim
ε→0+

∫ 1−ε
0 s (1− s)−1ds

log(1/ε)
= lim

ε→0+

−(1− ε)ε−1

−1/ε
= 1,

we have
Ik � (k + 1) log(k + 2).

Finally, assume that α < 1/2. We have

lim
ε→0+

∫ 1−ε
0 s (1− s)2α−2ds

ε2α−1
= lim

ε→0+

−(1− ε)ε2α−2

(2α− 1) ε2α−2
=
−1

2α− 1
∈ (0,∞),

and so,

Ik � (k + 2)2α(k + 2)−(2α−1) � k + 1.

�

Lemma 2.6. Let α > 0 and n ∈ N. Then

n∑
k=0

k∑
`=0

(k + 1)−1(`+ 1)(k − `+ 1)2α−2 �


(n+ 1)2α, if α > 1/2,

(n+ 1) log(n+ 2), if α = 1/2,

n+ 1, if α < 1/2.

Proof. Assume first α > 1/2. Lemma 2.5 gives

n∑
k=0

(k + 1)−1
k∑
`=0

(`+ 1)(k − `+ 1)2α−2 �
n∑
k=0

(k + 1)2α−1 � (n+ 1)2α.

If α = 1/2, then Lemma 2.5 gives

n∑
k=0

(k + 1)−1
k∑
`=0

(`+ 1)(k − `+ 1)−1 �
n∑
k=0

log(k + 2) � (n+ 1) log(n+ 2).

Finally, if α < 1/2, then Lemma 2.5 gives

n∑
k=0

(k + 1)−1
k∑
`=0

(`+ 1)(k − `+ 1)2α−2 �
n∑
k=0

1 = n+ 1.
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�

3. Proof of Theorem 1.1

By symmetry, we can assume that α ≥ β.

Let us denote by {Pα,βn }∞n=0 the usual Jacobi polynomials on [−1, 1] orthogonal with
respect to the weight wα,β, with the normalization

hn :=

∫ 1

−1
|Pα,βn (x)|2(1− x)α(1 + x)βdx =

2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

n! Γ(n+ α+ β + 1)
.

Assume first that α, β ≥ 0. We can assume that α+ β > 0, since otherwise α = β = 0
and the inequality is trivial with C0,0 = 1. Since α ≥ β, we have α > 0. Assume also
α > β.

In [31, p.460] appears the following connection formula for Jacobi polynomials:

Pα,βn (x) =
(β + 1)n

(γ + β + 2)n

n∑
j=0

γ + β + 2j + 1

γ + β + 1

(γ + β + 1)j (n+ α+ β + 1)j
(β + 1)j (n+ γ + β + 2)j

(α− γ)n−j
(n− j)!

P γ,βj (x),

where (a)k is the Pochhammer symbol (a)0 = 1 and

(a)k = a(a+ 1)(a+ 2) · · · (a+ k − 1),

for k ∈ Z+. Hence,

(a)k =
Γ(a+ k)

Γ(a)
,

for every k ∈ N.
Since α > β, we have

Pα,βk (x) =
(β + 1)k
(2β + 2)k

k∑
j=0

2β + 2j + 1

2β + 1

(2β + 1)j (k + α+ β + 1)j
(β + 1)j (k + 2β + 2)j

(α− β)k−j
(k − j)!

P β,βj (x)

=
(β + 1)k

(2β + 1)k+1

k∑
j=0

(2j + 2β + 1)
(2β + 1)j (k + α+ β + 1)j

(β + 1)j (k + 2β + 2)j

(α− β)k−j
(k − j)!

P β,βj (x).



Lupaş-type inequality and applications to Markov-type inequalities in weighted Sobolev spaces 11

If we denote by Jα,βk the Jacobi orthonormal polynomial of degree k, i.e., Jα,βk =

h
−1/2
k Pα,βk , then the previous formula reads as√

2α+β+1

2k + α+ β + 1

Γ(k + α+ 1)Γ(k + β + 1)

k! Γ(k + α+ β + 1)
Jα,βk (x)

=
(β + 1)k

(2β + 1)k+1

k∑
j=0

(2j + 2β + 1)
(2β + 1)j (k + α+ β + 1)j

(β + 1)j (k + 2β + 2)j

(α− β)k−j
(k − j)!

·

√
22β+1

2j + 2β + 1

Γ(j + β + 1)2

j! Γ(j + 2β + 1)
Jβ,βj (x).

Hence,

Jα,βk (x) =
k∑
j=0

ak,jJ
β,β
j (x),

where

ak,j =

√
2k + α+ β + 1

2α−β
k! Γ(k + α+ β + 1)

Γ(k + α+ 1)Γ(k + β + 1)

(β + 1)k
(2β + 1)k+1

· (2β + 1)j (k + α+ β + 1)j
(β + 1)j (k + 2β + 2)j

(α− β)k−j
(k − j)!

√
(2j + 2β + 1)

Γ(j + β + 1)2

j! Γ(j + 2β + 1)
.

Since α, β ≥ 0,

k! Γ(k + α+ β + 1)

Γ(k + α+ 1)Γ(k + β + 1)
=

Γ(k + 1)

Γ(k + α+ 1)

Γ(k + α+ β + 1)

Γ(k + β + 1)
� (k + 1)−α(k + 1)α = 1.

Since α > β ≥ 0, we have

(β + 1)k
(2β + 1)k+1

=
Γ(k + β + 1)Γ(2β + 1)

Γ(k + 2β + 2)Γ(β + 1)
� (k + 1)−β−1

and

(2β + 1)j (k + α+ β + 1)j
(β + 1)j (k + 2β + 2)j

(α− β)k−j
(k − j)!

=
Γ(j + 2β + 1)Γ(β + 1)Γ(k + j + α+ β + 1)Γ(k + 2β + 2)

Γ(j + β + 1)Γ(2β + 1)Γ(k + α+ β + 1)Γ(k + j + 2β + 2)

Γ(k − j + α− β)

Γ(α− β)Γ(k − j + 1)
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and, since 0 ≤ j ≤ k,

Γ(j + 2β + 1)

Γ(j + β + 1)
� (j + 1)β,

Γ(k + j + α+ β + 1)

Γ(k + j + 2β + 2)
� (k + j + 1)α−β−1 � (k + 1)α−β−1,

Γ(k + 2β + 2)

Γ(k + α+ β + 1)
� (k + 1)β−α+1,

Γ(k − j + α− β)

Γ(k − j + 1)
� (k − j + 1)α−β−1,

then√
k! Γ(k + α+ β + 1)

Γ(k + α+ 1)Γ(k + β + 1)

(2β + 1)j (k + α+ β + 1)j
(β + 1)j (k + 2β + 2)j

(α− β)k−j
(k − j)!

√
Γ(j + β + 1)2

j! Γ(j + 2β + 1)

� (j + 1)β(k − j + 1)α−β−1,

and, as a consequence,

ak,j � (k + 1)1/2(k + 1)−β−1(j + 1)β(k − j + 1)α−β−1(j + 1)1/2

= (k + 1)−β−1/2(j + 1)β+1/2(k − j + 1)α−β−1.

If β = 0, then we stop this process. Assume that β > 0. Let us denote by {Cλn}∞n=0 the
usual Gegenbauer polynomials on [−1, 1] orthogonal with respect to the weight wλ−1/2,λ−1/2,
with λ > −1/2 and the normalization

Hn :=

∫ 1

−1
|Cλn(x)|2(1− x2)λ−1/2dx =

21−2λπΓ(n+ 2λ)

n! (n+ λ) Γ(λ)2
.

It is well-known (see, e.g., [31, p.444] or [37, p.263]) that

Cλn(x) =
(2λ)n

(λ+ 1/2)n
P λ−1/2,λ−1/2
n (x).

Let us consider λ = β + 1/2, and so, λ > 1/2.
In [37, p.263] appears the following connection formula for Gegenbauer polynomials:

Can(x) =

[n/2]∑
j=0

(n− 2j + b)(a− b)j (a)n−j
(n− j + b) j! (b)n−j

Cbn−2j(x) .

Thus,

Cλk (x) =

[k/2]∑
j=0

(k − 2j + 1/2)(λ− 1/2)j (λ)k−j
(k − j + 1/2) j! (1/2)k−j

C
1/2
k−2j(x) .
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If we denote by Gλk the Gegenbauer orthonormal polynomial of degree k, i.e., Gλk =

H
−1/2
k Cλk , then Gλk = Jβ,βk and the previous formula reads as√

21−2λπΓ(k + 2λ)

k! (k + λ) Γ(λ)2
Gλk(x)

=

[k/2]∑
j=0

(k − 2j + 1/2)(λ− 1/2)j (λ)k−j
(k − j + 1/2) j! (1/2)k−j

√
πΓ(k − 2j + 1)

(k − 2j)! (k − 2j + 1/2) Γ(1/2)2
G

1/2
k−2j(x)

=

[k/2]∑
j=0

(k − 2j + 1/2)1/2(λ− 1/2)j (λ)k−j
(k − j + 1/2) j! (1/2)k−j

G
1/2
k−2j(x).

Hence,

Gλk(x) =

[k/2]∑
j=0

bk,k−2j G
1/2
k−2j(x),

where

bk,k−2j =

√
k! (k + λ) Γ(λ)2

21−2λπΓ(k + 2λ)

(k − 2j + 1/2)1/2(λ− 1/2)j (λ)k−j
(k − j + 1/2) j! (1/2)k−j

.

Since λ > 1/2, we have√
Γ(k + 1) (k + λ) Γ(λ)2

21−2λπΓ(k + 2λ)
�
√

(k + 1)1−2λ(k + 1) = (k + 1)1−λ

and, since 0 ≤ j ≤ [k/2],

(k − 2j + 1/2)1/2(λ− 1/2)j (λ)k−j
(k − j + 1/2) j! (1/2)k−j

=
(k − 2j + 1/2)1/2Γ(j + λ− 1/2)Γ(k − j + λ)Γ(1/2)

(k − j + 1/2)Γ(j + 1)Γ(k − j + 1/2)Γ(λ− 1/2)Γ(λ)

� (k − 2j + 1)1/2(j + 1)λ−3/2(k − j + 1)λ−1/2

k − j + 1

� (k − 2j + 1)1/2(j + 1)λ−3/2(k + 1)λ−3/2.

Hence,

bk,k−2j � (k + 1)−1/2(j + 1)λ−3/2(k − 2j + 1)1/2.

Let us define bk,j = 0 if j > k or if k − j is odd. Thus,

Gλk(x) =

k∑
j=0

bk,j G
1/2
j (x), Jβ,βj (x) =

j∑
`=0

bj,` J
0,0
` (x),
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and

Jα,βk (x) =

k∑
j=0

ak,jJ
β,β
j (x) =

k∑
j=0

j∑
`=0

ak,jbj,` J
0,0
` (x)

=

k∑
`=0

J0,0
` (x)

k∑
j=`

ak,jbj,` =

k∑
`=0

ck,` J
0,0
` (x),

with

ck,` =

k∑
j=`

ak,jbj,`.

Since β = λ− 1/2, we know that

bk,k−2j � (k + 1)−1/2(j + 1)β−1(k − 2j + 1)1/2,

and so,

bj,` � (j + 1)−1/2(j − `+ 1)β−1(`+ 1)1/2,

if 0 ≤ ` ≤ j and j − ` is even, and bj,` = 0 otherwise.
Since α > β > 0, Lemmas 2.2 and 2.4 give

ck,` =
k∑
j=`

ak,jbj,` �
k∑

j=`, j−` even
(k + 1)−β−1/2(j + 1)β+1/2(k − j + 1)α−β−1

· (j + 1)−1/2(j − `+ 1)β−1(`+ 1)1/2

� (k + 1)−β−1/2(`+ 1)1/2
k∑
j=`

(j + 1)β(j − `+ 1)β−1(k − j + 1)α−β−1

� (k + 1)−β−1/2(`+ 1)1/2(k + 1)β(k − `+ 1)α−1

= (k + 1)−1/2(`+ 1)1/2(k − `+ 1)α−1.

Thus, Lemma 2.6 gives

n∑
k=0

k∑
`=0

c2
k,` � Uα(n) :=


(n+ 1)2α, if α > 1/2,

(n+ 1) log(n+ 2), if α = 1/2,

n+ 1, if α < 1/2.

Let P1
n (respectively, P2

n) be the Hilbert space Pn with the inner product associated

with the weight wα,β (respectively, w0,0) and orthonormal basis {Jα,βk }
n
k=0 (respectively,

{J0,0
k }

n
k=0), and I the identity map I : P1

n → P2
n. The matrix representation of the map

I in the orthonormal bases {Jα,βk }
n
k=0 and {J0,0

k }
n
k=0 is In = (ck,`). If ‖In‖2 denotes the

induced 2-norm of In, then∫ 1

−1
|P (x)|2dx ≤ ‖In‖22

∫ 1

−1
|P (x)|2(1− x)α(1 + x)βdx,
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for every P ∈ Pn, and ‖In‖22 is the best possible constant. Since the 2-norm is at most the
Frobenius norm, we conclude

‖In‖22 ≤ ‖In‖2Fr =
n∑
k=0

k∑
j=0

c2
k,` � Uα(n),

and so, for each α > β > 0, there exists a constant C(α, β) such that

(3.7)

∫ 1

−1
|P (x)|2dx ≤ C(α, β)Uα(n)

∫ 1

−1
|P (x)|2(1− x)α(1 + x)βdx,

for every P ∈ Pn. This gives the result in this case, with Gα,β(n) =
√
C(α, β)Uα(n) .

If α > β = 0, then the same argument, with ak,j instead of ck,` (since bk,j = δk,j , i.e., the
matrix (bk,j) is the identity in this case), gives the same result with simpler computations.

If α = β > 0, then the same argument, with bk,j instead of ck,` (since the matrix (ak,j)
is the identity in this case), gives the same result. The case α = β = 0 is trivial.

Assume now −1 < β ≤ 0 < α. We have proved that∫ 1

−1
|P (x)|2dx ≤ C(α, 0)Uα(n)

∫ 1

−1
|P (x)|2(1− x)αdx,

for every P ∈ Pn. Since β ≤ 0, then 2β ≤ (1 + x)β for every x ∈ (−1, 1) and∫ 1

−1
|f(x)|2(1− x)αdx ≤ 2−β

∫ 1

−1
|f(x)|2(1− x)α(1 + x)βdx,

for every measurable function f , and so,∫ 1

−1
|P (x)|2dx ≤ 2−βC(α, 0)Uα(n)

∫ 1

−1
|P (x)|2(1− x)α(1 + x)βdx,

for every P ∈ Pn.

Finally, assume that −1 < β ≤ α ≤ 0. Thus, 2α ≤ (1− x)α and 2β ≤ (1 + x)β for every
x ∈ (−1, 1) and ∫ 1

−1
|f(x)|2dx ≤ 2−α−β

∫ 1

−1
|f(x)|2(1− x)α(1 + x)βdx,

for every measurable function f . This finishes the proof.

Remark 3.1. Note that the inequalities in Theorem 1.1 are essentially sharp: Since for
n ∈ N,

‖In‖22 ≥
1

n+ 1
‖In‖2Fr,

then the best constant in (1.6) is at least C Gα,β(n)(n + 1)−1/2. Furthermore, ‖In‖Fr is
likely to be an accurate approximation of ‖In‖2, as shown in the paper [29].
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4. Applications to Markov-type inequalities in weighted Sobolev spaces

In [21, Theorem 2.1] the authors extend the Markov-type inequalities to the framework
of weighted Sobolev spaces in the following way.

Theorem 4.1. The following inequalities hold.

(1) Laguerre-Sobolev case:

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ Cαn ‖P‖Wk,2(w,λ1w,...,λkw),

where w(x) := xαe−x in [0,∞), α > −1, λ1, . . . , λk ≥ 0, n ∈ N, P ∈ Pn and Cα is
a constant.

(2) Generalized Hermite-Sobolev case:

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤
√

2n ‖P‖Wk,2(w,λ1w,...,λkw),

where w(x) := |x|αe−x2 in R, α ≥ 0, λ1, . . . , λk ≥ 0, n ∈ N and P ∈ Pn.
(3) Jacobi-Sobolev case:

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ Cα,β n2 ‖P‖Wk,2(w,λ1w,...,λkw),

where w(x) := (1 − x)α(1 + x)β in [−1, 1], α, β > −1, λ1, . . . , λk ≥ 0, n ∈ N,
P ∈ Pn and Cα,β is a constant.

(4) Let us consider the generalized Jacobi weight w(x) := h(x)Πr
j=1|x − cj |γj in [a, b]

with c1, . . . , cr ∈ R, γ1, . . . , γr ∈ R, γj > −1 if cj ∈ [a, b], and h a measurable
function satisfying 0 < m ≤ h(x) ≤ M in [a, b] for some constants m,M . Then
there exists a constant C1 = C1(a, b, c1, . . . , cr, γ1, . . . , γr,m,M) such that

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ C1 n
2 ‖P‖Wk,2(w,λ1w,...,λkw),

for every λ1, . . . , λk ≥ 0, n ∈ N and P ∈ Pn.
(5) Consider now the generalized Laguerre weight w(x) := h(x)Πr

j=1|x − cj |γje−x in

[0,∞) with c1 < · · · < cr, cr ≥ 0, γ1, . . . , γr ∈ R, γj > −1 if cj ≥ 0, and h a
measurable function satisfying 0 < m ≤ h(x) ≤ M in [0,∞) for some constants
m,M.

(5.1) If
∑r−1

j=1 γj = 0, then there exists a constant C2 = C2(a, b, c1, . . . , cr, γ1, . . . , γr,m,M)
such that

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ C2 n
2 ‖P‖Wk,2(w,λ1w,...,λkw),

for every λ1, . . . , λk ≥ 0, n ∈ N and P ∈ Pn.
(5.2) Assume that

∑r
j=1 γj > −1. Let r0 := min{1 ≤ j ≤ r | cj ≥ 0}, and

assume that max{γj , γj+1} ≥ −1/2 for every r0 ≤ j < r. Then there exists a
constant C ′2 = C ′2(a, b, c1, . . . , cr, γ1, . . . , γr,m,M) such that

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ C ′2 na
′ ‖P‖Wk,2(w,λ1w,...,λkw),

for every λ1, . . . , λk ≥ 0, n ∈ N and P ∈ Pn, where

a′ := 2 + max
{

0, γr0 , γr0+1, . . . , γr
}
.
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(6) Consider the generalized Hermite weight w(x) := h(x)Πr
j=1|x − cj |γje−x

2
in R

with c1 < · · · < cr, γ1, . . . , γr > −1 with
∑r

j=1 γj ≥ 0, and h a measurable

function satisfying 0 < m ≤ h(x) ≤ M in R for some constants m,M. Assume
that max{γj , γj+1} ≥ −1/2 for every 1 ≤ j < r. Then there exists a constant
C3 = C3(a, b, c1, . . . , cr, γ1, . . . , γr,m,M) such that

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ C3 n
a ‖P‖Wk,2(w,λ1w,...,λkw),

for every λ1, . . . , λk ≥ 0, n ∈ N and P ∈ Pn, where

a := max
{

2 , b+
1

2

}
, b := 1 + max

{
0, γ1, γ2, . . . , γr

}
.

In each case the multiplicative constants depend just on the specified parameters and
they do not depend on n or λ1, . . . , λk.

Remark 4.1. Note that in (5.2), there is no hypothesis on
∑r−1

j=1 γj.

The goal of this section is to improve inequalities (5.2) and (6). In fact, we have
the following result. As in the case of Theorem 1.1, we remove here the hypothesis
max{γj , γj+1} ≥ −1/2.

Theorem 4.2. The following inequalities hold.

(1) Consider the generalized Laguerre weight w(x) := h(x)Πr
j=1|x− cj |γje−x in [0,∞)

with c1 < · · · < cr, cr ≥ 0, γ1, . . . , γr ∈ R, γj > −1 if cj ≥ 0, and h a measurable
function satisfying 0 < m ≤ h(x) ≤M in [0,∞) for some constants m,M. Assume
that

∑r
j=1 γj > −1. Let r0 := min{1 ≤ j ≤ r | cj ≥ 0}. Then there exists a

constant K1 = K1(a, b, c1, . . . , cr, γ1, . . . , γr,m,M) such that

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ K1 n
u ‖P‖Wk,2(w,λ1w,...,λkw),

for every λ1, . . . , λk ≥ 0, n ∈ N and P ∈ Pn, where

u := 1 + max
{

1, γr0 , γr0+1, . . . , γr
}
.

(2) Consider the generalized Hermite weight w(x) := h(x)Πr
j=1|x− cj |γje−x

2
in R with

c1 < · · · < cr, γ1, . . . , γr > −1 and
∑r

j=1 γj ≥ 0, and h a measurable function

satisfying 0 < m ≤ h(x) ≤ M in R for some constants m,M. Then there exists a
constant K2 = K2(a, b, c1, . . . , cr, γ1, . . . , γr,m,M) such that

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ K2 n
v ‖P‖Wk,2(w,λ1w,...,λkw),

for every λ1, . . . , λk ≥ 0, n ∈ N and P ∈ Pn, where

v :=
1

2
+ max

{3

2
, γ1, γ2, . . . , γr

}
.

In each case the multiplicative constants depend just on the specified parameters and
they do not depend on n or λ1, . . . , λk.
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Proof. The argument in the proof of Theorem 4.1 gives the result, by using inequality
(1.6) instead of (1.5).

In the proof of (5.2), the interval [0,∞) in the integral ‖P ′‖2
Lk,2(w)

is split into several

subintervals. The power n2 is in one of the bounds. The following powers are in the
bounds of the remaining intervals

n · n1+max{0,γr0}, n · n1+max{γr0 ,γr0+1}, . . . , n · n1+max{γr−1,γr}, n · n1+max{γr,0},

where the second term in each product is obtained when (1.5) is applied. Hence, by using
Theorem 1.1, we can replace these powers by

nG0,γr0
(n), nGγr0 ,γr0+1(n), . . . , nGγr−1,γr(n), nGγr,0(n).

Therefore, if max
{

0, γr0 , γr0+1, . . . , γr
}
≤ 1, we obtain a bound of order n2.

If max
{

0, γr0 , γr0+1, . . . , γr
}
> 1, then we have a bound of order nu, with

u = max
{

2, 1 + max
{

0, γr0 , γr0+1, . . . , γr
}}

= 1 + max
{

1, γr0 , γr0+1, . . . , γr
}
,

and this finishes the proof of (1).
Note that the hypothesis max{γj , γj+1} ≥ −1/2 for every r0 ≤ j < r in (5.2) is not

needed, since it was used just in order to apply (1.5), and we apply (1.6) instead of (1.5).

In the generalized Hermite case, the interval R in the integral ‖P ′‖2
Lk,2(w)

is split into

several subintervals. The power n2 is in one of the bounds, and the following powers are
in the bounds of the remaining intervals

n1/2n1+max{0,γ1}, n1/2n1+max{γ1,γ2}, . . . , n1/2n1+max{γr−1,γr}, n1/2n1+max{γr,0},

where the second term in each product is obtained when (1.5) is applied. Hence, by using
Theorem 1.1, we can replace these powers by

n1/2G0,γ1(n), n1/2Gγ1,γ2(n), . . . , n1/2Gγr−1,γr(n), n1/2Gγr,0(n).

Therefore, if max
{

0, γ1, γ2, . . . , γr
}
≤ 3/2, we obtain a bound of order n2.

If max
{

0, γ1, γ2, . . . , γr
}
> 3/2, then we have a bound of order nv, with

v = max
{

2,
1

2
+ max

{
0, γ1, γ2, . . . , γr

}}
=

1

2
+ max

{3

2
, γ1, γ2, . . . , γr

}
,

and this concludes the proof of (2). �
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