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ABsTtracT. In the pioneering paper [13], the concept of Coherent Pair was introduced by Iserles et al. In
particular, an algorithm to compute Fourier Coefficients in expansions of Sobolev orthogonal polynomials
defined from coherent pairs of measures supported on an infinite subset of the real line is described. In
this paper we extend such an algorithm in the framework of the so called Symmetric (1,1)—Coherent Pairs
presented in [8].
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REsUMEN. En el articulo pionero [13], fue introducido el concepto de Par Coherente por Iserles et al. En
particular, alli es descrito un algoritmo para calcular coeficientes de Fourier de expansiones de polinomios
ortogonales de tipo Sobolev definidos a partir de pares de medidas coherentes soportadas en un subconjunto
infinito de la recta real. En esta contribucién extendemos tal algoritmo en el contexto de los llamados Pares
Simétricos (1,1)—Coherentes presentados en [8].
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1. Introduction

Let {10, 11} be a pair of positive Borel measures supported on an infinite subset E on the real line. Let
{Pn},>0 and {Ry},~, be the corresponding sequences of monic orthogonal polynomials, (SMOP in short).
The pair {po, i1} is said to be coherent if there exist real numbers a,, # 0, n > 1, called coherent coefficients,

such that P o) P (a)
T x
R _ n+2 n+1 > 0.
nt1(2) n+2 + on n+l T
This concept is introduced in [13], where sequences of Sobolev polynomials, i.e. orthogonal with respect to

the Sobolev inner product

P a)s = / p(@)a(x)dpo + A / P (@)d (@)dy, A >0, p.q € P, (1)

are studied. Here P denotes the linear space of polynomials with real coefficients. In the last three decades
special attention has been paid to the so-called general Sobolev Orthogonality defined by the inner product

Fahs =3 [ 1O @)t )

where every p;,5 = 0,1,...,m, is a positive Borel measure supported on an infinite subset of the real line.
Such an inner product is known in the literature as a Sobolev inner product. In 1947 the foundations of the
theory of Sobolev Orthogonality were stated in the pioneering work [15] by D. C. Lewis, where finite Fourier
expansions in terms of Sobolev polynomials are the solution of certain extremal problem related to smooth
polynomial approximation. In early 60s, P. Althammer presented his first work, see [1], based on the seminal
paper of Lewis, and rewrote the Lewis’s problem as follows. Given the inner product

()5 =Y [ 10 @)ui(a)da, ®)

where the w}s are weight functions in [a, b], and a function, f, defined in [a, ], to determine

min —

i [1f = Qlls.
where P,, represents the linear space of polynomials of degree less than or equal to n and ||.||4 is the norm
induced by (, )¢ . If {Sn},>( is the sequence of orthonormal polynomials with respect to (3), the polynomial
@*, where the minimum is achieved, will be a linear combination of Sobolev orthogonal polynomials, namely,

Q" (z) = ZakSk(J:), with ar = (f, Sk)g -
k=0

[17] and [19] constitute nice surveys on the historical development and state of the art of Sobolev orthogonal-
ity. In addition, in [13] a relation between the sequence of monic Sobolev polynomials {S;)}n>0 , (orthogonal
with respect to (1)) and {P,},~,, the sequence of monic polynomials orthogonal with respect to dpug is
given. Namely,

Sn12(@) + 10N SR (2) = Prsa(2) + anPu(@),n > 0,
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ON SYMMETRIC (1,1)-COHERENT PAIRS AND SOBOLEV ORTHOGONAL POLYNOMIALS 3
where the values 7, (\) are called Sobolev coefficients. Let consider the Sobolev space
W'2(E, po, 1) ={9: E =R |ge L*(E;u), ¢ €L*(E;m)},

For a function f in such a space, an efficient algorithm to compute Fourier coefficients when f is expanded
by using the orthogonal basis {Sfl‘}n>O is described. Such an algorithm does not need the explicit expres-
sion of Sobolev orthogonal polynomials. In [6], the most general case of coherence for standard orthogonal
polynomials is known in the literature and presented as follows.

Definition 1. A pair of positive Borel measures {po, 11} is said to be a (M, N)—coherent pair of order
(m, k) if the corresponding SMOPs satisfy

M N
m k
D ain Pl () = Y i@y i), (1)
i=0 i=0
[i] P, (x) ~ ;
where m, k, M,N € NU{0}, Pp’(z) = CFIR and {ain}, <qs {bjnt,sg: 0< i < M, 0< j < N are
n i 2 2
sequences of real numbers with ag , = by, = 1. Here (n)g,k = 0,1,..., denotes the Pochhammer symbol,

ie. (n)p=nn+1)---(n+k—1),k>1, and (n)y =

Thus, in [5] the algorithm proposed in [13] for (1,0)—coherent pairs of order (1,0) is generalized in a
natural way for (M, N)—coherent pairs of measures of order (m,0). On the other hand, when the measures
o and pq are symmetric, i.e. invariant under the transformation x — —x, and the respective SMOPs
,{Pn}nzo and {R"}nZO satisfy

Pys(x) P ()
Rn+2(x) = n+_i 3 +an nJr_i 1

7n 2 07

the pair {po,p1} is said to be symmetric coherent, a concept that has been also introduced in [13]. A
generalization is presented in [8] with the so called symmetric (1,1)—coherent pairs of measures, i.e. when
the respective SMOPs satisfy

P1Iz+3(ff) a P’r/L—‘rl(x)

n > 0.
n+3 n+1 "=

Ryo(x) + bRy (z) = ,
Therein, connection properties between the coherent and recurrence coefficients, among others, are obtained,
as well as a special emphasis in the case yg classical, (Hermite, Gegenbauer) is pointed out. In particular, the
symmetric (1,1)—coherent pair {e’””2d3:, :;Zj;‘ge*’gdxh a,b > 0, is obtained. Taking into account the above
pair, in [9] asymptotic properties of Sobolev polynomials associated with the above (1,1) Hermite symmetric

coherent pair are studied. Finally, in [10] a classification of symmetric (1,1)—coherent pairs is presented.

The aim of this contribution is to study the natural generalization of the algorithm displayed in [13], in
the symmetric (1,1)—coherent framework. So, the structure of this manuscript is as follows. In Section 2
the basic background on orthogonal polynomials associated with a linear functional is presented. In Section
3 the algebraic relation between the Sobolev polynomials and polynomials orthogonal with respect to g
is deeply analyzed. In Section 4 the algorithm to compute Fourier coefficients is described. Finally, some
numerical examples are studied.
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4 HERBERT DUENAS RUIZ, FRANCISCO MARCELLAN & ALEJANDRO MOLANO
2. Preliminaries

Let P be the linear space of polynomials with real coefficients. P,, will denote the linear subspace of poly-
nomials of degree at most n. Let u be a linear functional in the algebraic dual space of P. It will be denoted
P’. (u,p) is the action of the linear functional u on the polynomial p € P. Let {u,},~, be a sequence of
real numbers. u is a moment functional associated with the moment sequence {uy}, ., if v is linear and
up, = (u,z"),n > 0. A sequence of polynomials {P,}, -, , with deg P,, = n, determines an unique sequence
of linear functionals {p,},,~, called dual basis associated with { Py}, -, , in such a way that (pn, Pr) = 6n,m,
where 4, ,, denotes the Kronecker delta symbol. As a consequence, every u € P’ can be expressed in terms
of the basis {pn},~, as follows

u= Z (u, Pg) Pk-

E>0
On the other hand, if ¢ € P and u € P’, then we define qu € P’, the left multiplication, as
(qu,p) == (u,qp), peP. (5)

The linear functional é(x — ¢) such that (6(x — ¢),p) := p(c), p € P, ¢ € C, is said to be the Dirac delta
linear functional at c.

Given u € P’, let 0 € P be a polynomial of degree n and denote by x;, € C, 1 < k < r, their zeros
with multiplicities ny, respectively, i.e. >} _, ny = n. Then for every p € P, we define the linear functional

o~ (z)u € P’ as follows,
- Lo’ ;
(o () o= (0, PO o0, 0
where L, (x;p) is the interpolatory polynomial

r n;—1

Lo(z;p) = Z Z P (i) Li s (), (7)

i=1 j=0

and L; ;(x) is the polynomial of degree at most n — 1 such that LEZ) (1) = 0ii0k 5, 4,0 =1,--- 1, p\9) the
j — th derivative of pand 0 < k,j <mn; — 1.

On the other hand, given ¢ € P we will denote by uq € P, the right-multiplication of v € P’ by ¢, the

polynomial
(ua)(t) = (u, MO =2,

t—zx
where u acts on the variable x.

The p — th derivative of the functional u, p € Z1 U {0}, denoted by DPu, is a linear functional such that

(DPu,q(2) = (1) (u,aP (@), qeP. (8)
For a more detailed description of this algebraic approach to linear functionals, see [18].
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ON SYMMETRIC (1,1)-COHERENT PAIRS AND SOBOLEV ORTHOGONAL POLYNOMIALS 5

2.1. Quasi-definite and Positive-definite linear functionals

Let u be a linear functional and {u,},~, be the corresponding moment sequence. We define the Hankel
determinant of order n + 1 -

uo ul DY un
“ U1 U2 ot Up4a
ATL = . . . . ) n Z 0 (9)
Up, un+l e U2n

u is said to be quasi-definite or regular(see [4]) if the leading principal submatrices of the Hankel matriz
(uiﬂ);’;:o are non-singular, i.e. A% # 0 for n > 0. u is called positive-definite if (u,7(z)) > 0 for every
non identically zero and non-negative real polynomial 7. When there is not risk of confusion we will write
A, instead of Al.

The positive definiteness of a linear functional can be characterized through the associated moment
sequence. Namely,

Theorem 2. ([4]). u is positive definite if and only if A, >0 forn > 0.

If w is positive-definite, then there exists a positive Borel measure p supported on an infinite set £ C R
such that u has an integral representation

(u,p) = /Ep(x)du(x), peP.

Given a quasi-definite linear functional u on the space P, a bilinear form (,), : P x P — R is defined as

(p,q), = (u,pq) . If u is positive definite, then the bilinear form is an inner product on P and, as usual, the
induced norm will be represented as

1/2
o — (w5 — ([ e
1ol = (.22 = (u,p?) (/Em Y )) ,

where p is the positive Borel measure, supported on F, associated with .
2.2. Orthogonal polynomials

Definition 3. A polynomial sequence {P,},~, is said to be an orthogonal polynomial sequence, OPS in
short, with respect to a linear functional u if for n,m > 0,

i). P, is a polynomial of degree n.
ii). (u, P, Py) =0, for n # m.
iii). <u, P3> #0,n > 0.

If the leading coefficient of P, is 1 for every n > 0, then {P,}, ., is said to be a monic orthogonal
polynomial sequence, (SMOP in short). The next result gives us conditions for the existence of an OPS
associated with a linear functional.

Proposition 4. ([4]). Let u be a linear functional. u is quasi-definite if and only if there exists an OPS
{Pn} >0 with respect to u.
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Under the conditions of above proposition, if {u,},, is the moment sequence associated with w, then
every monic polynomial P, can be written as B

uO ul DY un
1 Ui Uz -+ Unp41
Pn(gg): : : . s ?’lzL Po(x)zl
Anfl . . .
Up—1 Un - U2n—1
1 T z"

Given a quasi-definite linear functional there exists an infinite number of OPS associated with u. Indeed, if
{P,},>0 is an OPS associated with u, then {k, P, }, - is also an OPS associated with u for non-zero constants
ky. Thus {P,}, -, is uniquely determined if the leading coefficients are fixed. Conversely, if {P,},~, is an
OPS associated with u, for any k£ # 0, then {P,}, -, is also an OPS associated with the linear functional
ku. In order to the quasi-definite linear functional and the OPS are uniquely determined, a normalization
will be required. In this way, in the sequel we will assume that (u,1) = 1 as well as the respective OPS is
monic, unless stated otherwise.

The next theorem describes an important characterization of the orthogonality of a sequence of monic
polynomials in terms of a recurrence relation satisfied by them. In the literature it is partially accepted that
the original version of this result is due to J. Favard [11], but essentially it means the spectral resolution of
the multiplication operator.

Theorem 5 (Favard’s theorem). ([4]). Let {P,},~, be a sequence of monic polynomials. {P,},~, s a
MOPS with respect to a quasi-definite linear functional u if and only if there exist sequences of real numbers
{Butys1 and {yn}, >, with v, # 0,n > 1, such that

2Pp(2) = Pry1(x) + BnPo(z) + v Poo1(x), n>1, (10)
Py(z) =1, Pi(x) =2 — Bo.
On the other hand,

B <u, :cPﬁ)

ﬂ _ <u7xPnPn71> _ <u7P72L>
o w Py

n Z 07 '7n = <U,’ P3_1> - <U7P5_1>7 n 2 ]-

The relation (10) is the so-called Three-Term Recurrence Relation, (TTRR in short). A nice survey about
the Favard’s theorem, its origins and further development is given in [16]. The TTRR is equivalent to the
well known and useful Christoffel-Darbouz Identity.

Theorem 6. (/3/, [4]). A SMOP {P,}, -~ associated with a quasi-definite linear functional u satisfies (10)
if and only if -

i Pk:(x)Pk(y) — 1 PnJrl(x)Pn(y) - Pn(x)Pn+1(y)
k=0 <U,P/3> <U7P7%> r—=Yy
2.3. Symmetric Linear Functionals

A linear functional u € P’ is said to be symmetric if wugn41 = (u,2?" ') = 0,n € N. (See [4] for more
characterizations of symmetric quasi-definite linear functionals). If u € P’ is symmetric and quasi-definite
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and {P,},~ is its corresponding SMOP, we can define u € P’ by
(w, 2"y = (u,2*"), neN. (11)
In such situation, there exist monic polynomials A,, and gn, n > 0, such that

Pon(z) = Ap(2?)  and  Poni(z) = 24, (22). (12)

As a consequence of the above definition, if u is a symmetric and quasi-definite linear functional, then
{A,}n>0 and {A,},>0 are the SMOP corresponding to @ and zu, respectively. When u is symmetric and
positive definite and it has an integral representation in terms of the even weight function w on [—(, (], then

¢
<%M@>=[¥M@w®M%

yields
<2
@) = [ pl)e ez,
0
assuming the integrals converge.

3. Sobolev polynomials and Symmetric (1,1)— Coherent Pairs

We begin with the definition of Symmetric (1,1)—Coherent Pair introduced in [8]. From now on in this
manuscript we assume that any linear functional u is normalized by the condition (u, 1) = 1.

Definition 7. Let u and v denote two symmetric quasi-definite linear functionals and {P,}, -, and {R,}, ~,
will denote their respective SMOP. Assume that there exist sequences of non-zero real numbers {ay,}, o and
{bn}, >0, With a,b, # 0, such that -

P’r/L+3(m) o P7/1+1<x)
n+3 " n+1

= Rpq2(x) + by Rp(z), n >0, (13)

holds. Then the pair {u,v} is said to be a Symmetric (1,1)— Coherent Pair. Furthermore, if v and v are
positive-definite and o and p1 are the respective positive Borel measures, then {uo, p1} is said to be a
Symmetric (1,1)— Coherent Pair of measures.

With the condition a,b, # 0, n > 0, we are assuming that the relation (13) is non-degenerated. Moreover
if a; # b;, 1 =0,1, we get

Proposition 8. ([7]). Let {u,v} be a Symmetric (1,1)—coherent pair satisfying (13). The following state-
ments are equivalent.

Z) a; # bi; ) 2071

ii). By (x) 2 Lt w1 (7)

o , form > 2.
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Let {u, v} be a symmetric (1, 1)—coherent pair with {P,}, -, and {R,}, - as their respective SMOP such
that (13) holds. We assume that u and v are positive-definite with o and p; as the corresponding positive
Borel measures. Let {uy},~, and {v,},~, be, respectively, their moment sequences. Then we consider the
Sobolev inner product

P a)g = / p(2)a(@)dpo(z) + A / P (@) @du (), 2> 0. (14)

Let {S;)}TDO be the sequence of monic Sobolev polynomials orthogonal with respect to (14). The above
inner product also will be written as

@)= (P @), + X0, d),, = (w,pg) + A (v, p'q).

For n > 1, we consider the expansion S)(x) = 2" + Z;:Ol ey v’y and let Ag, = det[u; ]} ;_, be the
determinant of the leading principal submatrix of size (n + 1) x (n + 1) associated with the moments

Mij o= <xi,xj>s. According to (14) if i+ 3§ = 0,1, then p; ; = u;1;, and if i + j > 2 we have

pig = (a'2l)g= / o dpo(x) + ijA / e 2dyp ()
R R

= Uity +7;jAUZ‘+j_2.

Moreover, if i 4 j is odd or ¢j = 0, then p; j = u;4;. It is well known that

1 U U cee Up,
1 U1 H1,1 H1,2 s Hin
AS,nfl
Un—-1 Hn-1,1 HMHn—-1,2 -°° Hn—1,n
1 T z? e z"

_1)nt2Hi AT '
Furthermore, ¢} ; = =) A Sn=l Where A% is obtained deleting the j — ¢th column and the
’ S,n—1 ’

(n+ 1) — th row of the matrix [, ;]

=0
Remark 9. Notice that Py(z) = Sp(z) for k =0,1,2.

Using properties of the determinants and after cumbersome calculations we obtain

1 ul e un71
U1 H11 H1n—1
AS,?L—I =
Up—1 Hn-1,1 *°° Hn—1n-1
1 ul .« .. un—l
Uy U + Avg cee Up + (0 — 1) Av,_o
Up—1 Up+ (N —DAp_g -+ Uzp_2+ (n— 1)*Avgy_y
= (n—DN2AL AT AL
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From the above, every coefficient of S is a rational function in A\ where the degree numerator is at most
the degree of the denominator. Then it makes sense to define the sequence {W,},

W, (z) := lim S (z),

A—00

where, as a consequence of the symmetry, if n is even (resp. odd), then W,, is an even function (resp. odd).

On the other hand, if deg(q) < n, then

n+17 /Sn+1 x)dpo(x +>\/ n-i-l (ﬂf)q

When A — oo, [ W) 1 (2)¢ (z)dui(z) =0, ie.

"(z)dpa (z) = 0.

W1 (x) = (n+ 1)Ry(x),n > 0. (15)
Moreover, for n >0, (Sp,,1 > = [z Spi1(@)dpo(z) = 0. If A — oo, then we get
/ W1 (2)dpio () = 0. (16)
R
From (13) and by using (15) we have
Wits(x) +b, Wit () _ Prys(z) ta, Py (z) Tk, n>o0.
n—+3 n+1 n+3 n+1
Integration of the above expression with respect to the measure pg, and using (16) yields &, = 0, i.e.
Wos3(2) + b Wi (2) = Poys (@) + Gn Py (z),  n>0, (17)
where 43 +3
an:anLv Nn:an7 n>0
n+1 n+1
Now let consider the expansion of W,, by using the basis {S;}}n>0
n—1
W () = Sh(@) + Y 009 (@) (18)
§=0

Notice that

WS e Wa@)S)@)dpo(w) + X Jy Wiw) () (2)dpn (@)
n,j — ) 2 y
15311 1535
and HS;‘HZ = <S;‘,Sj>‘> In the same way, Wyy3(z) = Sp, 4(x) + Z s an+37JS>‘(x), and multiplying by

by, in (18) we get

Waia(@) +baWaia(2) = S)pa(®) + OntsnsaSrea@) + (onismin +5a) Sk (@)

+ Z (O'n+3,j +En0-n+1’j) Sj‘(.’lﬁ)

Jj=0
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Taking into account the polynomials W,,;3 and W4 are either even or odd functions, then 0,43 542 =0

holds. Thus
n+1

Wois(z) +Zan+1( ) = n+3 ) + Z nn,J

where every coefficient 7, ; (A), j < n, can be written as:
Mg (A)
= Op+3,; + bn0n+1,j
S (Wass(@) + BuWaia (2)) S} @)dpo(2) + A fy, (Wi a(@) + 5aWipa (2)) (8) (@)dpu (2)

s}l

)

and opq1p41 = 1.
By using (17) we obtain

[ (W) +5.W0(0)) 8} @)diola) = [ (Pusa(o) +Pasa () 8} do(a) = 0

R
for j =0,1,...,n, and the relation (15) yields

/R ( i3(z) +EnWé+1(m)) (SJ)-‘)/ (z)dp (z) = 0.

As a consequence,

Wn-&-3($) + ann-&-l(x) = ST)L\+3(‘T) + ?7n,n+1(>\)52+1(1?)- (19)
Equivalently,
Sr/}+3($) + nn,n+1()‘)sr/}+1($) = Ppy3(z) +@nPryi(z), n>0. (20)
Taking derivatives
Sass)' (@) Sasn) (@)
(:_3—)3 + nn,n+1(A)(7;;j_)3 = Poi2(x) + anPp(r),n > 0. (21)
Notice that
77n,n+1(>‘) = 03—&-3 n+1 +g
!
_ f]R nt3(T n+1( x)dpo () + A fR n+3 ) (Sf{H) (z)dp1 () +’5
HS alls
and, again, using (15) we obtain
I
| Wisla) (S20) @dia(z) = 0
e fu W, (&) dolz)
d ~
n+3 'n, M‘O
Nn(A) == Nnne1(N) = £ +1 + bn. (22)

|| 2l
We summarize the above results in the next
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ON SYMMETRIC (1,1)-COHERENT PAIRS AND SOBOLEV ORTHOGONAL POLYNOMIALS 11

Theorem 10. Let {4, pu1} be a symmetric (1,1)—coherent pair of measures with {Py,}, -, and {Ry}, 5, as
their respective SMOPs satisfying (13) and let {Sfl‘}n>0 be the Sobolev polynomials orthogonal with respect
to (14). Then, for n >0 N

Sn3(®) + 00 ()81 () = Pogs (@) + @ Posa (), (23)
holds with

Jo Wars(2) S5 () dpo(x )+5n- (24)

Nn(A) =
152415

The coefficients 1, (X) will be called Sobolev Coefficients.

Lemma 11. Forn >0 _
bn(n+1)% (v, R2) X + @y, (u, P2, )

M (A) = (25)
1524l
Proof. From (13), multlplymg by R, and using the measure p;, we get
P! P! (z)
bn 2 - n+3 n n ntl n
(v, ) < n—|—3 ’ )>m+a < n+1 B "
— n+3 W’I’/L+1(‘r) R (1')
n+ 3 bn n+1 " "
_ 1 Shia(® )+nn(/\)5n+1( )’Wn+1(9ﬂ) [ Pags(z) +anpn+1(x)’Wn+1(l’)
A n+3 n+3 n+1 /g n+3 n+1 n+1 o
M (N) 2 Qn 2
= —| ————— | - —(u, P, .
A((n+l)(n+3) Sneals (n+1) (e Prsa)
Then a
n 2
Abn (14 1) (04 3) (0, Bo) & s (04 3) (s P = 1) 18l
and the result follows. of

On the other hand, we use (13), (17), (20) and the notation (u, p(z)g(z)) := (p(x), ¢(z)),,, , i-e. We express
u in terms of the associated bilinear form in order to obtain

<Wn+3<x)v Sr>;+1(x)>ﬂo
= an(u, P3+1> — by (u, Pn2+1> — bulin—s (Was1(2), Poa(2)),,
Fbnnn—2(A) (Wi (2), Sr){—l(x»

0

Ho

and
<Wn+1(x),Pn,1(x)>H0
= <Pn+1(x) + 571—2Pn—1(x) - gn—QWn—l(x)v Rn—l(x)>

= (Zn_g — Zin—Q) (u, P_y).

Ho
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12 HERBERT DUENAS RUIZ, FRANCISCO MARCELLAN & ALEJANDRO MOLANO

Then, from the above relations, for n > 2 we get

(Ways(2), Spia (), = (an _Bn) (u, P21} = bytin o (aH _’EH) (u, P2_,)
+nin—2(\) (Waia(x), S5 (2))

o

If we denote Ij,(\) := (W (z), S?72(x)>uo , the above relation can be written as

In+3(>\) = (Zin _’gn) <U,P3+1> _’gnan72 (Zin72 _’I;n72) <’LL, P371> +,gn77n72(>\)ln+1()\) (26)
Moreover, from (25) we get

~ ~ ~ 2
Lngs(A) = bu(n + 1)°A (v, R%) + @ (u, P2y ) = by || Sy || - (27)
With Ip,41(A) from (24) and from (26) and (27) we get the next.

Lemma 12. Forn > 2

2 ~ ~
Shia =+ DA (v, R%) + (u, P}, 1) + @nz (an_Q - bn_g) (u, P} 1) = Nz (nn_g - bn—z) ‘ (28)

2
A
Sn—l
S

The above formula is useful in order to compute the norms HSfl‘ ||?9 if the Sobolev coeflicients are known.
We are going to describe the initial conditions which are needed. First, from their definitions it is easy to
see that _

boA + ag <u, P12>

A2 2
1S2][g = A+ (. P, mo(N) = N+ (u, PP (29)
On the other hand, for n =1, N
4 2 a p2
miyy = Dl BT G B (30)
15211
and since P3(z) = 2% — (u, PZ), we get
2
HS2)\||S = <S2/\752/\>s
= 4A(v,R}) + (u, P5).
As a consequence,
4by (v, R2Y \ + @, (u, P2
I3 = (0 B8) 4 (o3} (G PR) — wa)?, iy = PLTRAA BT

(0, BN+ (u, P§)

Thus, using (29) and for n = 2 in (28) we obtainHSQHQS. Then, from (25), we find 72(\). In an analogue
way, for n = 4,6,8,10,... in (28) we obtain HSé\kHHz and 72 (N), for every k € N. Similarly, from(31) we

can obtain recurrently HSé\k+2HZ and mogt1(N), for every k € N. In the next section we study a recurrence
formula for the coefficients 7, ().
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ON SYMMETRIC (1,1)-COHERENT PAIRS AND SOBOLEV ORTHOGONAL POLYNOMIALS 13

3.1. The Sobolev Coefficients

We define T11(z) = Wyi1(x) + by_sWn_1(z). Through straightforward calculations it is not difficult to
prove that

(Tny3(2), Tny1(x)) g
(Tny1(x), Tog1 (%)) g = Mn—2(N) (Tno1(2), Ty () g

This expression is well defined since the denominator is non zero. Indeed,

(Tog1(2), n+1(x)>s Nn—2(\) <Tn71(x)7Tn+1($)>s
= (Thta(z) - 77n 2(AN) Ty ( ) Sp1 () + M2 (M) Sh_1 (7))

= < () n+1 33)>

nn()‘) =

(32)

We will express each term in (32) in a more simple form.

(Th43(x), Tnis(2))
= (B ()+anpn+1(x),Pn+3(x)+anPn+1($)>,L0

(Wi (@) 4 B, 1 (@), W) + Wi (a))
= (u,Pls) +ay (u, Ply)
+A <(n + 3)Rpy2(2) + bp(n + 1) Ry (), (n + 3) Rpga(z) + by (n + l)Rn(m)>

M1

= puts + @pns1 + A (043 + B2+ 1))
Here we have used the notation r,, := <v, R?L> and p, := <u, P3> . Also, in a similar way
<Tn+1($), Tn+3(x)>s = anpn+l + /\En(n + 1)2Tna

and replacing in (32) we get for n > 1,

nn(/\)
UnPni1 + Agn(n +1)%r

Pn+1 + )\(Tl + 1)2’rn + af/i_gpn—l + /\Ab%_Q(n — 1)2rn—2 - 7]n—2()\) an—2pn—1 + )\gn—Q(n - 1)2Tn—2

)

where a_, =b_,, =0,n € N.

Remark 13. In connection with the Sobolev inner products, a particular case of symmetric (1, 1)—coherent
pair was studied in [2], when u is classical, and where it is possible to obtain an expression for the Sobolev
coefficients {7, (A\)},~o, as the above one. In adittion, a relation of the type (23) is obtained, which is a
necessary and sufficient condition in order to obtain the respective symmetric (1, 1)—coherence relation.

Furthermore, if we define for n > 1,

An = gn(n + 1>2rn7 Bn = ananrla Cn = (n + 1)2rn +5EL72Pn—17 Dn = Pn+1,
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14 HERBERT DUENAS RUIZ, FRANCISCO MARCELLAN & ALEJANDRO MOLANO

C1 = 4rq, then we can write

B A\ + B,
B Cn)\ + Dn - 777172()\) [An72)\ + Bn72] )

With this notation we can prove the next

Nn(A)

Theorem 14. There exist sequences of polynomials {Qn(\)},,>, and {@n(A)} 0 with deg (Q.,,) = deg (@n) =
n for every n, such that the following three term recurrence relations hold. B
Qn—i—l(A) = (0271,)\ + DQn) Qn()\) - (A2n—2)\ + 3271—2)2 Qn—l()\)7 (33)

@n-ﬁ-l(A) - (02n+1)\ + D2n+1) @n(A) - (A2n—1)\ + B27L—1)2 én—l()\)7 (34)
with, the initial conditions Qo(N\) = Qo(A) = 1, Q1 (A) = A + (u, Py, and Q1(\) = 4(v,R3) X + (u, P}).
Furthermore, the Sobolev coefficients are rational functions in terms of such polynomials, namely

Q” (A)

n(A) = (Agp A + Bay) ————, 35
M2n(A) = (A2 2)Qn+1()\) (35)
and ~
@n(N)
Mant1(A) = (Aznt1A + Bang1) =——— (36)
QnJrl()‘)
Proof. The initial conditions are obtained according to the definition of ny(A) and 71(X). Suppose that
n—1(A
N2n—2(A) = (A2n—2A + Ba,—2) Qan;))7 then
Aop A+ Bay,
7]277,()‘) = : : 2 Q7 —1()‘)
ConA + Dap — (A2n—2A + Bap-2) m

(ConX + D2p) Qu(N) — (A2n_2A + Ban_2)” Qu_1(\)

Thus (33) holds with Q,,11(\) as the denominator. In an analogous way, 12,—1(\) = (Aap—1A + Ban—_1) QQ",_E)(\;\)
and we get B !
B (A2n 1A + Bany1) Qn(N)
Mans1(N) = . —
(C2nt1A + D2pt1) Qn(A) = (A2n—1A + Bap-1)” Qn-1(A)
If we denote the denominator by Q,11()), then we get (34). v

Remark 15. Notice that B,, = gnrnﬂ # 0. Moreover, if a,, = 0, then A,, = 0, for every n. As a consequence,
(13) becomes
R 4(x) R, .(z)
Pn _ n+3 bn n+1 >0
+2 (x) "+ 3 + n+ 1 ,yn =2 U,

and, according to Favard’s theorem, the recurrence relations (33) and (34) mean that {Q,(\)}, 5, and

{én()\)} o, 2re orthogonal in the standard sense.
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Remark 16. The recurrence relation satisfied by the sequences {Q, (M)}, ~, and {CNQ”(/\)} L, e studied
= n>0
for the first time in [14] and, in the literature, they are known as Rj; type recurrence relations.

4. Algorithm for Sobolev-Fourier coefficients

In this section we will describe an algorithm to compute the Fourier coefficients in expansions of Sobolev
polynomials, orthogonal with respect to

(P a)s = / p(2)g(@)dpo(z) + A / P (@) (@) (), A> 0.

For f € W3 [R, po, 1] = {f|f € L*(po), f’ € L*(p1) } we can expand f in terms of monic Sobolev orthogonal
polynomials {Sé}roo’ namely

= (£.5)
fla)~ 3o L5055,

2
1521

We denote sjy := ||, i" 2= (f,Sn)g and F := f}/s,. F is said to be the n — th Sobolev-Fourier
coefficient. To have the basic tools for implementation of the algorithms, we deduce the following result.

n=0

Lemma 17.

fove (N f2 =wa(f), n>0, (37)
holds, where
wnlf) = (Pasale) + a2 P0)) AP e PR (39)
Mo M1

with the initial conditions n_1(\) =0, fg = (f,1)g = (f. 1) 7=, z),, + A {(f,1),, and
wo(f) = (f, Pa(2)),,, + A, Po(x)),, -
Proof. From (20) and (13) we get

PT/L+3(:E) a Py’H_l(x)
n—+3 " n+1

S;)+3(I) + Wn()‘)SQH(I) = Ppy3(z) + anPryi(x)

= Rn+2(£17) + ban(I)

n+2

(f,812)s

—Mn—-1 <f7 S’r)7,\>S + <fa Pn+2(1') + an—1

n+2

= it (18D + (£ Pasalo) + an

n+2
n

i <f’, Plon(@) + s Pg<x>>

231
n—+2

= —Mn-1 <fa Sr);>5+<fapn+2(x)+an—l

+A(n+2) (f', Rug1(z) + b1 Rp—1())

p1?

and the result follows. [
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Now we will summarize the results that, together with (37), yield the structure of the algorithm.

e Forn>1 _
An = bn(n + 1)2rn’ Bn = anpn—i—h Dn = Pn+1, (39)
and for n > 2
Cp=n+1)>2r, +a opn_1, (40)
with a_, = b_, =0 for n € N, C; = 4rq, furthermore, for n > 0, a,, = L—%an and Zn = + 3bn.
n+1 n+1
. C .. ~ ~ 50A+50P1
e With the initial conditions Q_1(A) =0, Qo(A) = Qo(A) =1, Q1 (A) = A+ p1, no(N\) = B nd
~ b1
4biri A + Zilpg
A)= —————= t
m(A) 4ri A+ po ) WO B¢
Qn(N)
n(A) = (Aogp A+ Boy) ————, n>1, 41
N2n(A) = (A2 2)Qn+1(>\) (41)
and _
n(A
n2n+1()\) = (A2n+1>\ + B2n+1) 97(>7 n Z 17 (42)
Qn+1()‘>
with
Qn+1(A) = (ConA + Day) Qu(A) — (Azn—2A + Ban—2) Qu_1(N), (43)
and _ _ _
Qns1(A) = (Cons1 A + Dans1) @n(N) = (A2n—1A + Ban—1)” Quo1(N). (44)

e With initial conditions 57 = A+ p; and 7;(\) in (30), for n > 1
Sher = (04 D2+ Dt + ana (Gnz = buo2) Puot =2 (20 = bua ) shye - (45)

In order to describe the algorithms, we assume the sequences {ay},~, and {b,}, . are known.

Algorithm 1 (Even order Fourier-Sobolev coefficients). For n even, the Fourier—Sobolev coefficients F) =

fa _ . Sn)s

L = =22 can be computed using the following algorithm
s S 12
no Sl
Starting data. Initial conditions A, f3', n_1, s9, é,l, éo,wo(f)7 A_1,B_1,Cy and D;.

Step 1. Using the starting data to compute f2 with the relation (37) and n = 0, s3 through (45) with
n =1 and finally F.

Step 2. Using the starting data and the information in step 1 compute: @1 taking n =0 in (44) , 41, By
with (39) and n = 0, n;()\) taking n = 0 in (42), we with n = 2 in (38), f; through (37) with n = 2, and
finally s} taking n = 3 in (45). Then to compute F}.
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Step k. For k > 3, using the starting data and the information in steps 1 to k — 1 we can compute Agy_3,
Boj—3, Cop—1 and Doj_1 with n =k — 1 in (39) and (40), Qy, taking n =k — 1 in (44), Agy_1, Bap_1 with
(39) and n =k — 1, map—1()) taking n = k — 1 in (42), woy with n = 2k in (38), f3) o through (37) with
n = 2k, and finally s3, , taking n = 2k + 1 in (45). Then, compute Fj),,,.

A S,
Algorithm 2 (Odd order). For n even, the Fourier-Sobolev coefficients F} = f—z = W can be
s
n nils
computed using the following algorithm.

Starting data. Initial conditions \, f7, no, 57, Qo, Q1, w1(f), Ao, Bo, C2 and Ds.

Step 1. Using the starting data compute f3' through (37) with n = 1, s3 through (45) with n = 2 and
then to compute F3.

Step 2. Using the starting data and the information in step 1, compute @2 taking n =1 in (43), A, By
with (39) and n = 1, no()\) taking n = 1 in (41), w3 with n = 3 in (38), f2 through (37) with n = 3, and
finally s2 taking n = 4 in (45). Then compute F2.

Step k. For k > 3, using the starting data and the information in steps 1 to kK — 1 we can compute As,_o,
Bsj—2, Coi, and Doy, with n = k in (39) and (40), Q41 taking n = k in (44) , Aok, Bog with (39) and n = k,
n2k(A) taking n =k in (42), wapq1 with n = 2k + 1 in (38), f2) 5 through (37) with n = 2k + 1, and finally
5§k+3 taking n = 2k 4+ 2 in (45). Then, compute F2>\k+3'

4.1. Numerical examples
Next, with the help of MATHEMATICA, we carry out some numerical experiments where the algorithms
described above are implemented.

Example 18. (Gegenbauer Polynomials). In [8] the Symmetric (1, 1)—coherent pairs, when w is the classical
Gegenbauer functional, are exhibited. In particular, the pair
2’ +a

215 (1- xg)"_l/zdx,
x

dpo = (1 — 22)"Y2dx, dpy =

a,beRY, a#b n>—1/2, z € [—1,1], is obtained. Let {C’T(Ln)} be the sequence of monic Gegenbauer
n>0

polynomials, orthogonal with respect to the inner product

1
(0, a), = [1p(x)q(x)(1 — 2212,

Also, the Gegenbauer polynomials satisfy the TTRR

n(n+2n—1) o

C(U)
An+n—1)(n+n "

i (z) = 20 () —

(), n>1,

and C’é") (x) = 1. The corresponding norm is

2 _4m (D(n+n+1/2))°T (n + 2n)

nl.
n 2(n+n) (1“(2n+277))2

o]
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According to the results of the previous sections, if duy = (1 — xz)nfl/ 2dz, then we have the symmetric
(1,1)—coherent relation

O (@) + b2 O (@) = Qu(@) + an-2Quoa(®),  n =2,
where {Qy, }n>0 is the SMOP with respect to the measure dp;. Moreover, from (20) we get

n+3
n+1

SX3(2) + 0 (N)Sh s () = OV (@) + ——b,C (2),  n>0.

Explicit relations between recurrence coefficients and the sequences {ay},~, and {b,},~, are given in [8].
To be more precise, if {3}, are the recurrence coefficients of the polynomials {Q,},~,, we get

1
b —_— — = —~’
T o TN

n(n+2n—1)
dn+n—1)(n+n)

+ bn—2 - bn—l = 571 +apn—2—apn-1, N = 27

(n—2)(n+2n—3) b 3( n(n+2n—1)

n— = bp—2 — bn— ) > 5,
“4n+n—3)(n+n-2) ntn—Dmtn ) K

and

an—2§n—2 = Qn-3 (?n + ap_2 — an—l) , n Z 5.

In addition, the sequence {b,}, -, satisfies the nonlinear quadratic difference equation

(46) bt
B 1 m+1)(n+2n) m+2)(n+2n+1)
(47) B 4(n+77+1)< 4(n+n) (n+n+2) )
(48) N b3 —32 7n(n+1)(n+277)(n2+277—1)’
1— 2| 16(n+n)*((n+n)" =1y
2ba
for n > 3.

For a fixed initial value by we can compute the sequences of parameters {a,}, -, and {b,},,~, as long as
the recurrence coefficients are known. A priori, we do not know the recurrence coefficients {7, },,~, . However,
it is possible to compute them with the desired precision through an efficient algorithm. For instance, the
algorithms 1 and 4 in [12] meet this specific case, where there is a rational perturbation.

We will use the function f(z) = e~100@=0.2)* Tt can be seen that f € Wy [R, 1o, p11]. On one hand, in
order to show the graphics of some partial Fourier-Sobolev sums, we choose n =5, A =0.001, a =1, b = 2.
In Table 1 we get the first 16 Fourier-Gegenbauer-Sobolev coefficients.
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n Qn by, Nn(A) 53\1 f;z\ Fvi\

0 | 1.003 |1 3 0.71 0.1391 0.1963

1 | 1.5062 | 1.5 3 0.051 0.0263 0.5195
2 | 2.0084 | 2 3.3 0.0059 —0.004 —0.7336
3 | 221 2.2 3.073 | 0.00086 —0.0036 —4.221
4 | 22084 | 2.1985 | 2.94 0.00014 —0.0001 —0.691
5 | 2.2199 | 2.21 2.03 0.000026 0.0005 20.22

6 | 2228 | 22177 | 1.57 5.09 x 1076 | 0.0001 22.253
7 12234 |2224 |0.051 |1.44x10~% | —0.00007 —48.261
8 | 2.2387 | 2.2288 | 0.038 | 3.77 x 10~7 | —0.00003 —81.427
9 | 2.2427 | 2.2328 | 0.018 | 2.457 x 10~7 | —0.00005 —20.938
10 | 2.246 | 2.2361 | 0.019 | 7.243 x 107 | —0.00004 —48.874
11 | 2.2487 | 2.2388 | 0.02 3.395 x 10~7 | 0.00002 62.233
12 | 2.251 | 2.2411 | 0.021 | 7.26 x 10~% | 0.00002 268.769
13 | 2.253 | 2.2431 | 0.0211 | 1.59 x 108 | —5.21 x 10~7 | —32.765
14 | 2.2547 | 2.2447 | 0.022 | 3.521 x 1072 | =3.71 x 1075 | —1053.25
15 | 2.256 | 2.2462 | 0.0221 | 7.92 x 10710 | —5.47 x 10~7 | —690.56

19

TABLE 1. Fourier-Gegenbauer-Sobolev coefficients with n =5, A = 0.001, a =1, b = 2.

Furthermore, in Figure 1 we show the partial sums for n = 4,7,11,15 and 17.

10

y

FIGURE 1. Partial sums for n =4, 7, 11, 15 and 17, moreover n =1, A=0.5, a =1, b = 2. f in red.
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On the other hand, in order to analyze the variation of the partial sums with respect to the parameter 7.
In Figure 2 we set A = 0.7, a = 2, b =1 and n = 16. In particular, we show the partial sums for n = 0.5,1,2
and 2.5.

FIGURE 2. 16 — th partial sums for n = 0.5 (magenta), 1.5 (blue), 2 (green) and 2.5 (siena), when A = 0.7, a = 2,
b=1, f in red.

Finally, setting n =1, n = 16, a = 1, b = 3, in Figure 4 we exhibit the partial sums for A = 0.1, 0.8, 1.8
and 10.
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FIGURE 3. 16 — th partial sums for A = 0.1 (purple), 0.8 (cyan), 1.8 (green) and 10 (blue), whenn=1,a=1,b=3
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FIGURE 4. 16 — th partial sums, (Zoom), for A\ = 0.1 (purple), 0.8 (cyan), 1.8 (green) and 10 (blue), when n = 1,
a=1,b=3
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