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Abstract

In this paper we analyze the behaviour of the zeros of polynomials orthogonal with
respect to the Uvarov perturbation of a positive Borel measure dµ(x). When the
measure is semiclassical, then its electrostatic interpretation is given.
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1 Introduction and statement of the main results

This paper deals with the behavior of the zeros of the sequence of monic poly-
nomials {pn(λ, c; x)}n≥0 orthogonal with respect to the Uvarov perturbation
dµ(λ, c; x) = dµ(x) + λδ(x− c), where dµ(x) is a positive Borel measure sup-
ported in a finite or infinite interval (a, b), δ(x−c) is the Dirac delta functional
at c, with c 6∈ (a, b), and λ is a nonnegative real number. In other words this
means that this sequence of polynomials is orthogonal with respect to the
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inner product

〈p, q〉λ,c =
∫ b

a
p(x)q(x)dµ(x) + λp(c)q(c). (1)

Let xn,k(λ, c), k = 1, . . . , n, be the zeros of pn(λ, c; x). If λ is a nonnegative
real number then dµ(λ, c; x) is a positive measure, and, as a consequence, the
zeros of pn(λ, c; x) are real, simple, and lie in (c, b) (resp. in (a, c)) if c ≤ a

(resp. if c ≥ b), that is,

min{a, c} < xn,1(λ, c) < · · · < xn,n(λ, c) < max{b, c}.

In particular, if λ = 0 we denote by xn,k := xn,k(0, c) the zeros of pn(x) :=
pn(0, c; x), the sequence of monic polynomials orthogonal with respect to the
measure dµ(x).

Now, some natural questions arise: Are there values of the parameter λ for
which the zeros of pn(λ, c; x) interlace with the zeros of pn(x)?. Are the ze-
ros xn,k(λ, c) monotonic functions with respect to the parameter λ?. Do the
zeros xn,k(λ, c) converge when λ goes to infinity?. If so, what the speed of
convergence is?.

One of our main contributions regards the questions posed above. We provide
an interlacing property as well as the monotonicity and asymptotic behaviour
of the zeros of the polynomial pn(λ, c; x) with respect to λ.

Theorem 1 Let λ > 0 and zn,1(c), ..., zn,n(c) be the zeros of the polynomial
rn(c; x) defined below.

(i) If c ≤ a, then

c < xn,1(λ, c) < xn,1 < zn−1,1(c) < xn,2(λ, c) < xn,2 < · · ·

· · · < zn−1,n−1(c) < xn,n(λ, c) < xn,n.

Moreover, each xn,k(λ, c) is a decreasing function of λ and, for each k =
1, . . . , n− 1,

lim
λ→∞

xn,1(λ, c) = c, lim
λ→∞

xn,k+1(λ, c) = zn−1,k(c),

as well as

lim
λ→∞

λ[xn,1(λ, c)− c] =
−pn(c)

Kn−1(c, c)rn−1(c; c)
,

lim
λ→∞

λ[xn,k+1(λ)− zn−1,k(c)] =
−pn(zn−1,k(c))

Kn−1(c, c)(zn−1,k(c)− c)[rn−1(c; x)]′x=zn−1,k(c)

.

(2)
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(ii) If c ≥ b, then

xn,1 < xn,1(λ, c) < zn−1,1(c) < · · ·

· · · < xn,n−1 < xn,n−1(λ, c) < zn−1,n−1(c) < xn,n < xn,n(λ, c) < c.

Moreover, each xn,k(λ, c) is an increasing function of λ and, for each k =
1, . . . , n− 1,

lim
λ→∞

xn,n(λ, c) = c, lim
λ→∞

xn,k(λ, c) = zn−1,k(c),

and

lim
λ→∞

λ[c− xn,n(λ, c)] =
pn(c)

Kn−1(c, c)rn−1(c; c)
,

lim
λ→∞

λ[zn−1,k(c)− xn,k(λ, c)] =
pn(zn−1,k(c))

Kn−1(c, c)(zn−1,k(c)− c)[rn−1(c; x)]′x=zn−1,k(c)

.

Note that the mass point c attracts one zero of pn(λ, c; x), that is, when λ

goes to infinity, it captures either the smallest or the largest zero, according
to the location of the point c with respect to the interval (a, b). In addition,
when either c < a or c > b, at most one of the zeros of pn(λ, c; x) is located
outside (a, b).

We point out that Theorem 1 is general in two aspects and uses new approaches
to the analyses of zeros: dµ(x) is any positive Borel measure and c is any value
outside (a, b).

Some particular cases of these polynomials appear in the seminal papers by
H. L. Krall [25] and A. M. Krall [24] devoted to the spectral analysis of fourth
order linear differential operators with polynomial coefficients. T. H. Koorn-
winder [23] analyzed a general situation for Jacobi weights when two masses
are added at the end points of the interval [-1,1]. Later on, in [15], Krall-
Hermite and Krall-Bessel polynomials are studied in the framework of Dar-
boux transformations.

In [22] analytic properties of orthogonal polynomials with respect to a pertur-
bation of the Laguerre weight when a mass is added at x = 0 are considered.
In [29], the holonomic equation for such perturbations when the mass point
is located in the negative real semi-axis is deduced. In the framework of the
spectral theory of higher order linear differential operators, in [20] and [21]
the authors obtain infinite order differential operators such that the Krall-
Laguerre and Krall-Jacobi are their eigenfunctions, respectively. In particular,
for some choices of the parameters of Laguerre and Jacobi weights they prove
that the differential operator has a finite order.
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On the other hand, in [26] the authors deduced the invariance of the semiclassi-
cal character of semiclassical linear functionals under Uvarov transformations
independently of the location of the mass point.

All the above questions concerning the behaviour of the zeros of the poly-
nomials pn(λ, c; x) were answered for two important and particular cases in
[6] and [7]. The authors considered the cases when dµ(x) = xαe−xdx with
(a, b) = (0,∞) and c = 0, and dµ(x) = (1−x)α(1+x)βdx with (a, b) = (−1, 1)
and c = 1, respectively.

We also provide the second order linear differential equation that the poly-
nomial pn(λ, c; x) satisfies when the measure dµ(x) in (1) is semiclassical (for
definition of a semiclassical measure see [30]). This is the main tool for the
electrostatic interpretation of zeros.

Theorem 2 The monic orthogonal polynomial sequence {pn(λ, c; x)}n≥0 sat-
isfies the holonomic equation (second order linear differential equation)

A(x;n)(pn(λ, c; x))
′′ + B(x;n)(pn(λ, c; x))

′ + C(x;n)pn(λ, c; x) = 0, (3)

where

A(x;n) =
cn [φ(x)]

2

B̃(x, n)− cnÃ(x, n)
,

B(x;n) =
φ(x)

[
B(x, n)− B̃(x, n) + cn(φ

′(x)− A(x, n))
]

B̃(x, n)− cnÃ(x, n)

−
cnφ(x)

2
(
B̃(x, n)− cnÃ(x, n)

)′

(
B̃(x, n)− cnÃ(x, n)

)2 ,

C(x;n) =
A(x, n)B̃(x, n)−B(x, n)Ã(x, n)

B̃(x, n)− cnÃ(x, n)
− φ(x)D

(
B̃(x, n)

B̃(x, n)− cnÃ(x, n)

)
.

In order to justify our approach, we must point out that the behavior of the
zeros of orthogonal polynomials has been extensively studied because of their
applications in many areas of physics and engineering. First, the zeros of or-
thogonal polynomials are the nodes of the Gaussian quadrature rules and also
play an important role in some of their extensions like Gauss-Radau, Gauss-
Lobatto, and Gauss-Kronrod rules, among others (see [5], [12] [32]). Second,
the zeros of classical orthogonal polynomials are the electrostatic equilibrium
points of positive unit charges interacting according to a logarithmic poten-
tial under the action of an external field, see Stieltjes’ papers [36], [37], [38]
and [39], Szegő’s book [40, Section 6.7], and some recent works like D. K.
Dimitrov and W. Van Assche [8], A. Grunbaum [13] and [14], M. E. H. Ismail
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[17], and F. Marcellán, A. Mart́ınez-Finkelshtein and P. Mart́ınez-González
[27] among others. Third, in a more general framework, the counting measure
of zeros weakly converges to the equilibrium measure associated with a loga-
rithmic potential (see [35]). Fourth, zeros of orthogonal polynomials are used
in collocation methods for boundary value problems of second order linear
differential operators (see [2]). Fifth, global properties of zeros of orthogonal
polynomials can be analyzed when they satisfy second order differential equa-
tions with polynomial coefficients using the WKB method (see [1]). Finally,
zeros of orthogonal polynomials are eigenvalues of Jacobi matrices and its role
in Numerical Linear Algebra is very well known.

The structure of the manuscript is as follows. In Section 2 we prove Theorem 1.
It follows from the Christoffel formula, from connections formula for the per-
turbed polynomials in terms of the initial ones and from a lemma concerning
the behavior of the zeros of a linear combination of two polynomials. In addi-
tion, we obtain new connection formulas for orthogonal polynomials obtained
from Uvarov and Christoffel transformations and some results about their ze-
ros. In section 3, we check these results for the Jacobi-type and Laguerre-type
orthogonal polynomials introduced by T. H. Koornwinder [23]. In Section 4
we obtain the holonomic equations that the polynomials pn(λ, c; x) satisfy us-
ing an alternative approach to the standard ones. We focus our attention on
the electrostatic interpretation of the zeros as equilibrium points in a loga-
rithmic potential interaction of positive unit charges under the presence of an
external field. We analyze such an equilibrium problem when the mass point
is located either on the boundary or in the exterior of the support of the
measure, respectively, for the Laguerre and Jacobi weights transformations.

2 Proof of Theorem 1

In this section, we prove Theorem 1 and present some new results.

Proof of Theorem 1: Le yn,k(c) be the zeros of the monic polynomials
qn(c; x) orthogonal with respect to the perturbed measure

dµ1(c; x) = |x− c|dµ(x),

where c 6∈ (a, b). This perturbation is the so-called Christoffel perturbation (see
[42] and [43]). It is well known that qn(c; x) is the monic kernel polynomial
which can be represented as (see [5, (7.3)])

qn(c; x) =
1

x− c

[
pn+1(x)−

pn+1(c)

pn(c)
pn(x)

]
=

‖pn‖
2
µ

pn(c)
Kn(c, x), (4)
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where Kn(c, x) is the n-th kernel polynomial defined by

Kn(c, x) =
n∑

j=0

pj(c)pj(x)

‖pj‖2µ
. (5)

In Chihara’s book [2, Theorem 7.2] we found the following interlacing property
involving the zeros of qn(c; x), pn+1(x) and pn(x):

• If c ≤ a, then

xn+1,1 < xn,1 < yn,1(c) < xn+1,2 < · · · < xn,n < yn,n(c) < xn+1,n+1;

• If c ≥ b, then

xn+1,1 < yn,1(c) < xn,1 < · · · < xn+1,n < yn,n(c) < xn,n < xn+1,n+1.

We introduce the monic polynomials rn(c; x) orthogonal with respect to the
measure

dµ2(c; x) = |x− c|dµ1(c; x) = (x− c)2dµ(x).

Using (4) we deduce that

rn(c; x)=
1

x− c

[
qn+1(c; x)−

qn+1(c; c)

qn(c; c)
qn(c; x)

]

=
1

(x− c)2
[pn+2(x)− dnpn+1(x) + enpn(x)] , (6)

where

dn =
pn+2(c)

pn+1(c)
+
qn+1(c; c)

qn(c; c)
=
pn+2(c) + pn(c)

pn+1(c)
en,

en =
qn+1(c; c)

qn(c; c)

pn+1(c)

pn(c)
=

‖pn+1‖
2
µ

‖pn‖2µ

Kn+1(c, c)

Kn(c, c)
> 0.

Notice that rn(c; c) 6= 0. If we denote by zn,k(c) the zeros of rn(c; x), then using
the three term recurrence relation

pn+1(x) = (x− βn)pn(x)− γnpn−1(x),

where

βn =
〈xpn, pn〉µ
‖pn‖2µ

, n ≥ 0, and γn =
‖pn‖

2
µ

‖pn−1‖2µ
> 0, n ≥ 1,

in (6) we obtain

rn(c; x) =
1

(x− c)2
[(x− βn+1 − dn)pn+1(x) + (en − γn+1)pn(x)] . (7)
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On the other hand,

en − γn+1 =
‖pn+1‖

2
µ

‖pn‖2µ

(
Kn+1(c, c)

Kn(c, c)
− 1

)
> 0. (8)

Thus, evaluating rn(c; x) at the zeros xn+1,k, from (7) and (8),

Sign [rn(c; xn+1,k)] = Sign [pn(xn+1,k)] , k = 1, . . . , n+ 1.

Since the zeros of pn+1(x) and pn(x) interlace, we conclude that

Theorem 3 The inequalities

xn+1,1 < zn,1(c) < xn+1,2 < zn,2(c) < · · · < xn+1,n < zn,n(c) < xn+1,n+1 (9)

hold for every n ∈ N.

In [1, (8)] (see also [41]) the authors show that

pn(λ, c; x) = pn(x)−
λpn(c)

1 + λKn−1(c, c)
Kn−1(c, x). (10)

In [16] another connection formula was obtained . Using the similar idea as in
Proposition 4 in [16] we obtain

Theorem 4 (Connection Formula) The polynomials p̂n(λ, c; x), with the
normalization p̂n(λ, c; x) = knpn(λ, c; x), can be represented as

p̂n(λ, c; x) = pn(x) + λKn−1 (c, c) (x− c)rn−1(c; x), (11)

where kn = 1 + λKn−1 (c, c).

Using the interlacing property (9) and the connection formula (11), we get

Sign [p̂n(λ, c; xn,k)] = Sign [λ(xn,k − c)rn−1(c; x)] , k = 1, . . . , n,

and

Sign [p̂n(λ, c; zn−1,k(c))] = Sign [pn(zn−1,k(c))] , k = 1, . . . , n− 1,

which yield the inequalities stated in Theorem 1. It remains to show the mono-
tonicity, asymptotics and the speed of the convergence of the zeros xn,k(λ, c)
with respect to λ. Indeed, it follows from the technique developed in [3, Lemma
1] and [7, Lemmas 1 and 2] (see also [33, Theorem 3.9]) concerning the zeros
of a linear combination of two polynomials with interlacing zeros.

We also derive a representation for the monic polynomial pn(λ, c; x) as a com-
bination of two Christoffel polynomials it will be very useful for obtain the
holomonic equation for pn(λ, c; x).
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Corollary 1 The monic polynomials pn(λ, c; x) can be also represented as

pn(λ, c; x) = qn(c; x) + cn qn−1(c; x), (12)

where

cn =
1 + λKn(c, c)

1 + λKn−1(c, c)

pn−1(c)

pn(c)
γn and γn =

‖pn‖
2
µ

‖pn−1‖2µ
. (13)

Using (5), we obtain

pn(x) =
‖pn‖

2
µ

pn(c)
[Kn(c, x)−Kn−1(c, x)] . (14)

From (4) and (14), we have

pn(x) = qn(c; x)− γn
pn−1(c)

pn(c)
qn−1(c; x). (15)

Therefore, substituting (4) and (15) in (10) we get (12).

In the following we deduce the value λ0 of the mass such that for λ > λ0 one
of the zeros of pn(λ, c; x) is located outside (a, b).

Corollary 2 Let λ > 0.

(i) If c < a, then the smallest zero xn,1(λ, c) satisfies

xn,1(λ, c) > a, for λ < λ0,

xn,1(λ, c) = a, for λ = λ0,

xn,1(λ, c) < a, for λ > λ0,

where

λ0 = λ0(n, a, c) =
−pn(a)

Kn−1 (c, c) (a− c)rn−1(c; a)
> 0.

(ii) If c > b, then the largest zero xn,n(λ, c) satisfies

xn,n(λ, c) < b, for λ < λ0,

xn,n(λ, c) = b, for λ = λ0,

xn,n(λ, c) > b, for λ > λ0,

where λ0 = λ0(n, b, c).

The proofs are a consequence of the connection formula (11).
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3 Application to classical measures

3.1 Jacobi type (Jacobi-Koornwinder) orthogonal polynomials

Let {p(α,β)n (x)}n≥0 be the monic Jacobi polynomial sequence which is orthogo-
nal with respect to the measure dµα,β(x) = (1−x)α(1+x)βdx, α, β > −1, sup-
ported on (−1, 1). We consider the following Uvarov perturbations of dµα,β(x)
where either a = −1 or a = 1, and λ ≥ 0.

dµ(λ,−1; x) = dµα,β(x) + λδ(x+ 1), (16)

dµ(λ, 1; x) = dµα,β(x) + λδ(x− 1). (17)

Such orthogonal polynomials were first studied by T. H. Koornwinder (see
[23]), in 1984. There, he adds simultaneously two Dirac delta functions at the
end points x = −1 and x = 1, that is,

dµM,N(x) = dµα,β(x) +Mδ(x+ 1) +Nδ(x− 1).

Denote by {p̂(α,β)n (λ,−1; x)}n≥0 and {p̂(α,β)n (λ, 1; x)}n≥0 the sequences of or-
thogonal polynomials with respect (16) and (17), with the normalization in-
troduced in Theorem 2, respectively. Then, the connection formulas are

p̂(α,β)n (λ,−1; x) = p(α,β)n (x) + λKn−1(−1,−1)(x+ 1)p
(α,β+2)
n−1 (x)

and

p̂(α,β)n (λ, 1; x) = p(α,β)n (x) + λKn−1(1, 1)(x− 1)p
(α+2,β)
n−1 (x).

It is straightforward to see that

Kn−1(−1,−1) =
1

2α+β+1

Γ(n+ β + 1)Γ(n+ α + β + 1)

Γ(n)Γ(β + 1)Γ(β + 2)Γ(n+ α)

and

Kn−1(1, 1) =
1

2α+β+1

Γ(n+ α + 1)Γ(n+ α + β + 1)

Γ(n)Γ(α + 1)Γ(α + 2)Γ(n+ β)
.

Recently, several authors ([1], [7], [11]) have been contributed to the analysis
of the behavior of the zeros of p̂(α,β)n (λ,−1; x) and p̂(α,β)n (λ, 1; x).

Let us denote by xn,k(α, β;λ) := xn,k(α, β;−1, λ) and xn,k(α, β), k = 1, . . . , n,
the zeros of p̂(α,β)n (λ,−1; x) and p(α,β)n (x), respectively, in an increasing order.
Then, applying Theorem 1, we obtain
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Theorem 5 ([7]) The inequalities

−1 < xn,1(α, β;λ) < xn,1(α, β) < xn−1,1(α, β + 2) < xn,2(α, β;λ) < xn,2(α, β) < · · ·

< xn−1,n−1(α, β + 2) < xn,n(α, β;λ) < xn,n(α, β)

hold for every α, β > −1. Moreover, each xn,k(α, β;λ) is a decreasing function
of λ and, for each k = 1, . . . , n− 1,

lim
λ→∞

xn,1(α, β;λ) = −1, lim
λ→∞

xn,k+1(α, β;λ) = xn−1,k(α, β + 2),

and

lim
λ→∞

λ[xn,1(α, β;λ) + 1] = hn(α, β),

lim
λ→∞

λ[xn,k+1(α, β;λ)− xn−1,k(α, β + 2)] =
[1− xn−1,k(α, β + 2)]hn(α, β)

2(β + 2)
,

where

hn(α, β) =
2α+β+2Γ(n)Γ(β + 2)Γ(β + 3)Γ(n+ α)

Γ(n+ β + 2)Γ(n+ α + β + 2)
.

From (2)

lim
λ→∞

λ[xn,1(α, β;λ) + 1] =
−p(α,β)n (−1)

Kn−1(−1,−1)p
(α,β+2)
n−1 (−1)

.

Since

p(α,β)n (−1) =
(−1)n2nΓ(n+ β + 1)Γ(n+ α + β + 1)

Γ(β + 1)Γ(2n+ α + β + 1)

and

Kn−1(−1,−1) =
1

2α+β+1

Γ(n+ β + 1)Γ(n+ α + β + 1)

Γ(n)Γ(β + 1)Γ(β + 2)Γ(n+ α)

we obtain

−p(α,β)n (−1)

Kn−1(−1,−1)p
(α,β+2)
n−1 (−1)

=
2α+β+2Γ(n)Γ(β + 2)Γ(β + 3)Γ(n+ α)

Γ(n+ β + 2)Γ(n+ α + β + 2)
= hn(α, β).

It also follows from (2) that

lim
λ→∞

λ[xn,k+1(α, β;λ)− xn−1,k(α, β + 2)]

=
−p(α,β)n (xn−1,k(α, β + 2))

Kn−1(−1,−1)(xn−1,k(α, β + 2) + 1)[p
(α,β+2)
n−1 (x)]′

∣∣∣
x=xn−1,k(α,β+2)

.

10



On the other hand, from

n(n+α)(1+x)p
(α,β+2)
n−1 (x) = n(n+α+β+1)p(α,β)n (x)+(β+1)(1−x)[p(α,β)n (x)]′

we derive

n(n+ α + β + 1)p(α,β)n (xn−1,k(α, β + 2))

= −(β + 1)(1− xn−1,k(α, β + 2))[p(α,β)n (x)]′
∣∣∣
x=xn−1,k(α,β+2)

as well as

n(n+ α)(1 + xn−1,k(α, β + 2))[p(α,β)n (x)]′
∣∣∣
x=xn−1,k(α,β+2)

= [n(n+ α + β + 1)− (β + 1)][p(α,β)n (x)]′
∣∣∣
x=xn−1,k(α,β+2)

+(β + 1)(1− xn−1,k(α, β + 2))[p(α,β)n (x)]′′
∣∣∣
x=xn−1,k(α,β+2)

.

Using the last two equalities and the differential equation for the Jacobi poly-
nomials

(1−x2)[p(α,β)n (x)]′′+[β−α−(α+β+1)x][p(α,β)n (x)]′+n(n+α+β+1)p(α,β)n (x) = 0

we obtain

(1 + xn−1,k(α, β + 2))[p(α,β+2)
n (x)]′

∣∣∣
x=xn−1,k(α,β+2)

=
−(n+ β + 1)(n+ α + β + 1)

(β + 1)(1− xn−1,k(α, β + 2))
p(α,β)n (xn−1,k(α, β + 2)).

Therefore,

lim
λ→∞

λ[xn,k+1(α, β;λ)− xn−1,k(α, β + 2)]

=
−p(α,β)n (xn−1,k(α, β + 2))

Kn−1(−1,−1)(xn−1,k(α, β + 2) + 1)[p
(α,β+2)
n−1 (x)]′

∣∣∣
x=xn−1,k(α,β+2)

=
[1− xn−1,k(α, β + 2)]hn(α, β)

2(β + 2)
.

Let xn,k(α, β;λ) := xn,k(α, β; 1, λ) be the zeros of p̂(α,β)n (λ, 1; x). Then

11



Theorem 6 ([7]) The inequalities

xn,1(α, β) < xn,1(α, β;λ) < xn−1,1(α + 2, β) < · · · <

xn,n−1(α, β) < xn,n−1(α, β;λ) < xn−1,n−1(α + 2, β) < xn,n(α, β) < xn,n(α, β;λ) < 1

hold for every α, β > −1. Moreover, each xn,k(α, β;λ) is an increasing function
of λ and, for each k = 1, . . . , n− 1,

lim
λ→∞

xn,n(α, β;λ) = 1, lim
λ→∞

xn,k(α, β;λ) = xn−1,k(α + 2, β),

and

lim
λ→∞

λ[1− xn,n(α, β;λ)] = gn(α, β),

lim
λ→∞

λ[xn−1,k(α + 2, β)− xn,k(α, β;λ)] =
[1 + xn−1,k(α + 2, β)] gn(α, β)

2(α + 2)
,

where

gn(α, β) =
2α+β+2Γ(n)Γ(α + 2)Γ(α + 3)Γ(n+ β)

Γ(n+ α + 2)Γ(n+ α + β + 2)
.

We can proceed as in the proof of Theorem 5. We only observe that

n+ β

2n
(x− 1)p

(α+2,β)
n−1 (x) = p(α,β)n (x)−

α + 1

n(n+ α + β + 1)
(1 + x)[p(α,β)n (x)]′.

To illustrate the results of Theorem 6, the graphs of p̂
(α,β)
3 (λ + ε, 1; x), for

α = β = 0 and some values of ε > 0 appear in Figure 1 where the monotonicity
of the zeros of p̂

(α,β)
3 (λ, 1; x) as a function of the mass λ is clarified.

In Table 1 we describe the zeros of p̂
(α,β)
3 (λ, 1; x), with α = β = 0, for several

choices of λ. Notice that the largest zero converges to 1 and the other two

Table 1
Zeros of p̂

(α,β)
3 (λ, 1;x) for some values of λ.

λ x3,1(0, 0;λ) x3,2(0, 0;λ) x3,3(0, 0;λ)

0 −0.774597 0 0.774597

1 −0.757872 0.0753429 0.955257

10 −0.755305 0.0868168 0.994575

100 −0.755004 0.0881528 0.999446

1000 −0.754974 0.0882886 0.999944

zeros converge to the zeros of the Jacobi polynomial p
(2,0)
2 (x), that is, they

12
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x
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1

Fig. 1. The graphs of p̂
(α,β)
3 (λ+ ǫ, 1;x) for some values of ε.

converge to x2,1(2, 0) = −0.75497 and x2,2(4) = 0.0883037. Also note that all
the zeros increase when λ increase.

3.2 Laguerre type (Laguerre-Koornwinder) orthogonal polynomials

Let {p(α)n (x)}n≥0 be the monic Laguerre polynomial which are orthogonal with
respect to the measure dµ(x) = xαe−xdx, α > −1, supported on (0,+∞). We
will consider the Uvarov perturbation on dµα(x) with c = 0

dµ(λ, 0; x) = dµ(x) + λδ(x), λ ≥ 0. (18)

The polynomial p(α)n (λ; x) := p(α)n (λ, 0; x) orthogonal with respect to (18)
was also obtained by T. H. Koornwinder [23] as a special limit case of the
Jacobi-Koornwinder (Jacobi type) orthogonal polynomial. Analytic proper-
ties of these polynomials have been studied in the last years (see [1], [6], [10],
[22], among others). The connection formula (11) reads

p̂(α)n (λ, x) = p(α)n (x) + λKn−1(0, 0) x p
(α+2)
n−1 (x),

where

Kn−1(0, 0) =
Γ(n+ α + 1)

Γ(n)Γ(α + 1)Γ(α + 2)
.

Now, we will analyze the behavior of their zeros. Let denote by xn,k(α;λ) and
xn,k(α), k = 1, . . . , n, the zeros of the Laguerre type and the classical Laguerre
orthogonal polynomials, respectively. Applying the results of Theorem 1 we
obtain

13



Theorem 7 ([6]) The inequalities

0 < xn,1(α;λ) < xn,1(α) < xn−1,1(α + 2) < xn,2(α;λ) <

xn,2(α) < · · · < xn−1,n−1(α + 2) < xn,n(α;λ) < xn,n(α)

hold for every α > −1. Moreover, each xn,k(α;λ) is a decreasing function of
λ and, for each k = 1, . . . , n− 1,

lim
λ→∞

xn,1(α;λ) = 0, lim
λ→∞

xn,k+1(α;λ) = xn−1,k(α + 2),

as well as

lim
λ→∞

λxn,1(α;λ) = gn(α),

lim
λ→∞

λ[xn,k+1(α;λ)− xn−1,k(α + 2)] =
gn(α)

α + 2
,

where

gn(α) =
Γ(n)Γ(α + 2)Γ(α + 3)

Γ(n+ α + 2)
.

From (2)

lim
λ→∞

λxn,1(α;λ) =
−p(α)n (0)

Kn−1(0, 0)p
(α+2)
n−1 (0)

.

Since

p(α)n (0) =
(−1)nΓ(n+ α + 1)

Γ(α + 1)
and Kn−1(0, 0) =

Γ(n+ α + 1)

Γ(n)Γ(α + 1)Γ(α + 2)
,

we obtain

−p(α)n (0)

Kn−1(0, 0)p
(α+2)
n−1 (0)

=
Γ(n)Γ(α + 2)Γ(α + 3)

Γ(n+ α + 2)
= gn(α).

From (2)

lim
λ→∞

λ[xn,k+1(α;λ)− xn−1,k(α + 2)]

=
−p(α)n (xn−1,k(α + 2))

Kn−1(0, 0)xn−1,k(α + 2)[p
(α+2)
n−1 (x)]′

∣∣∣
x=xn−1,k(α+2)

.

On the other hand, It is easy to verify that

xp
(α+2)
n−1 (x) = p(α)n (x) +

α + 1

n
[p(α)n (x)]′.

Thus,

[p(α)n (x)]′
∣∣∣
x=xn−1,k(α+2)

= −
n

α + 1
p(α)n (xn−1,k(α + 2))

14



and

xn−1,k(α + 2)[p(α)n (x)]′
∣∣∣
x=xn−1,k(α+2)

= [p(α)n (x)]′
∣∣∣
x=xn−1,k(α+2)

+
α + 1

n
[p(α)n (x)]′′

∣∣∣
x=xn−1,k(α+2)

.

Using the last two equalities and the differential equation for the Laguerre
polynomials

x[p(α)n (x)]′′ + (α + 1− x)[p(α)n (x)]′ + np(α)n (x) = 0

we obtain

xn−1,k(α + 2)[p(α)n (x)]′
∣∣∣
x=xn−1,k(α+2)

=
−(n+ α + 1)

α + 1
p(α)n (xn−1,k(α + 2)).

Therefore,

lim
λ→∞

λ[xn,k+1(α;λ)− xn−1,k(α + 2)]

=
−p(α)n (xn−1,k(α + 2))

Kn−1(0, 0)xn−1,k(α + 2)[p
(α+2)
n−1 (x)]′

∣∣∣
x=xn−1,k(α+2)

=
Γ(n)Γ(α + 2)Γ(α + 2)

Γ(n+ α + 2)
=
gn(α)

α + 2
.

To illustrate the results of Theorem 7 we enclose the graphs of p
(α)
3 (λ+ ε; x),

for α = 2 and some values of ε > 0. The Figure 2 shows the monotonicity of
the zeros of p

(α)
3 (λ; x) as a function of the mass λ.

5 10
x

-30

30

Fig. 2. The graphs of p
(α)
3 (λ+ ε;x) for some values of ε.
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The table 2 describes the zeros of p
(α)
3 (λ; x), with α = 2, for several choices

of λ. Observe that the smallest zero converges to 0 and the other two zeros

Table 2
Zeros of p

(α)
3 (λ;x) for some values of λ.

λ x3,1(2;λ) x3,2(2;λ) x3,3(2;λ)

0 1.51739 4.31158 9.17103

1 0.321731 3.64053 8.53774

10 0.0390611 3.5604 8.45936

100 0.00399042 3.55151 8.45049

1000 0.00039990 3.55061 8.44959

converge to the zeros of the Laguerre polynomial p
(4)
2 (x), that is, they converge

to x2,1(4) = 3.55051 and x2,2(4) = 8.44949. Note that all the zeros decrease
when λ increases.

4 Semiclassical orthogonal polynomials and spectral transforma-
tions

We assume that dµ(x) = ω(x)dx, where ω(x) is a weight function supported
on the real line. We can associate with ω (x) an external potential υ (x) such
that ω (x) = exp (−υ (x)). Notice that if υ(x) is assumed to be differentiable
on the support of dµ(x) = ω (x) dx then

ω′ (x)

ω (x)
= −υ′ (x) .

If υ′(x) is a rational function on (a, b), then the weight function ω(x) is said to
be semiclassical (see [30], [34]). The linear functional u associated with ω(x),

〈u, p(x)〉 =

b∫

a

p(x)ω (x) dx,

satisfies a distributional equation (which is known in the literature as Pearson
equation)

D(σ(x)u) = τ(x)u,

where σ(x) and τ(x) are non-zero polynomials such that σ(x) is monic and
deg(τ(x)) ≥ 1. Notice that, in terms of the weight function, the above relation
reads

ω′(x)

ω(x)
=
τ(x)− σ′(x)

σ(x)
, or, equivalently υ′(x) = −

τ(x)− σ′(x)

σ(x)
.
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Let consider the linear functional u1 associated with the measure dµ1(c, x). In
order to find the Pearson equation that u1 satisfies, we analyze two situations:

• If σ(c) 6= 0, then

D ((x− c)σ(x)u1)=D
(
(x− c)2σ(x)u

)
= 2(x− c)σ(x)u+ (x− c)2D(σ(x)u)

= 2σ(x)u1 + (x− c)2τ(x)u = [2σ(x) + (x− c)τ(x)] u1.

Thus,

D (φ(x)u1) = ψ(x)u1,

where ∣∣∣∣∣∣∣

φ(x) = (x− c)σ(x)

ψ(x) = 2σ(x) + (x− c)τ(x).
(19)

• If σ(c) = 0, i.e., σ(x) = (x− c)σ̄(x), then

D (σ(x)u1)=D ((x− c)σ̄(x)u1) = D
(
(x− c)2σ̄(x)u

)
= D ((x− c)σ(x)u)

= σ(x)u+ (x− c)D (σ(x)u) = σ(x)u+ (x− c)τ(x)u = (σ̄(x) + τ(x)) u1.

In this case,

D (φ(x)u1) = ψ(x)u1,

with ∣∣∣∣∣∣∣

φ(x) = σ(x)

ψ(x) = σ̄(x) + τ(x).
(20)

It is well known that the sequence of monic polynomials {qn(c; x)}n≥0, or-
thogonal with respect to dµ1(c, x), satisfies the structure relation (see [9] and
[30])

φ(x)D (qn(c; x)) = A(x, n)qn(c; x) + B(x, n)qn−1(c; x), (21)

where A(x, n) and B(x, n) are polynomials of a fixed degree, and the three
term recurrence relation (see [4] )

x qn(c; x) = qn+1(c; x) + β̃n qn(c; x) + γ̃n qn−1(c; x), n ≥ 0, (22)

with initial conditions q0(c; x) = 1 and q−1(c; x) = 0, and

β̃n = βn+1 +
pn+2(c)

pn+1(c)
−
pn+1(c)

pn(c)
, n ≥ 0, (23)

and

γ̃n =
pn+1(c)pn−1(c)

[pn(c)]
2 γn > 0 n ≥ 1. (24)
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Lemma 1 [17] We have

A(x, n) + A(x, n− 1) +
(x− β̃n−1)

γ̃n−1

B(x, n− 1) = φ′(x)− ψ(x). (25)

According to a result by Ismail ([17], (1.12)) which must be adapted to our
situation since we use monic polynomials, we get

A(x, n) + A(x, n− 1) +
(x− β̃n−1)

γ̃n−1

B(x, n− 1) =

− φ(x)
[ω1(x)]

′

ω1(x)
− φ(x)

ψ(x)− φ′(x)

φ(x)
φ′(x)− ψ(x),

where ω1(x) = (x− c)ω(x).

4.1 Uvarov transformations and holonomic equation

We consider the Uvarov transformation of the semiclassical measure dµ(x) =
ω(x)dx. We stablish the holonomic equation of these polynomials.

Proof of Theorem 2: Applying the derivative operator in (12) and multi-
plying it by φ(x), we obtain

φ(x)D (pn(λ, c; x)) = φ(x)D (qn(c; x)) + cnφ(x)D (qn−1(c; x)) . (26)

Thus, substituting (21) in (26), yields

φ(x)D (pn(λ, c; x)) = A(x, n)qn(c; x)+

[B(x, n) + cnA(x, n− 1)] qn−1(c; x) + cnB(x, n− 1)qn−2(c; x).

Using (22) in the above expression, we obtain

φ(x) (pn(λ, c; x))
′ = Ã(x, n)qn(c; x) + B̃(x, n)qn−1(c; x), (27)

where

Ã(x, n)=A(x, n)−
cn

γ̃n−1

B(x, n− 1) and (28)

B̃(x, n)=B(x, n) + cnA(x, n− 1) +
cn

γ̃n−1

(x− β̃n−1)B(x, n− 1). (29)
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Therefore, from (12) and (27), it follows that




1 cn

Ã(x, n) B̃(x, n)






qn(c; x)

qn−1(c; x)


 =




pn(λ, c; x)

φ(x)D (pn(λ, c; x))


 ,

that is,

qn(c; x) =
B̃(x, n)

B̃(x, n)− cnÃ(x, n)
pn(λ, c; x)−

cnφ(x)

B̃(x, n)− cnÃ(x, n)
D (pn(λ, c; x))

and

qn−1(c; x) =
−Ã(x, n)

B̃(x, n)− cnÃ(x, n)
pn(λ, c; x)+

φ(x)

B̃(x, n)− cnÃ(x, n)
D (pn(λ, c; x)) .

Substituting the above two expressions in (21), we deduce

φ(x)D

(
B̃(x, n)pn(λ, c; x)

B̃(x, n)− cnÃ(x, n)
−
cnφ(x)D (pn(λ, c; x))

B̃(x, n)− cnÃ(x, n)

)

= A(x, n)

(
B̃(x, n)pn(λ, c; x)

B̃(x, n)− cnÃ(x, n)
−
cnφ(x)D (pn(λ, c; x))

B̃(x, n)− cnÃ(x, n)

)

+ B(x, n)

(
−Ã(x, n)pn(λ, c; x)

B̃(x, n)− cnÃ(x, n)
+

φ(x)D (pn(λ, c; x))

B̃(x, n)− cnÃ(x, n)

)
.

Then the statement of Theorem 2 follows in a straightforward way.

A different approach to this differential equation appears in [26] using the
fact that the Uvarov transform of a semiclassical linear functional is again a
semiclassical linear functional.

If we evaluate the second-order linear differential equation (3) at xn,k(λ) :=
xn,k(λ, c), then we obtain

A(xn,k(λ);n)(pn(λ, c; xn,k(λ)))
′′ + B(xn,k(λ);n)(pn(λ, c; xn,k(λ)))

′ = 0.

Hence,
(pn(λ, c; xn,k(λ)))

′′

(pn(λ, c; xn,k(λ)))′
= −

B(xn,k(λ);n)

A(xn,k(λ);n)
. (30)

Substituting A(xn,k(λ);n) and B(xn,k(λ);n) in the right hand side of (30), we
get

(pn(λ, c; xn,k(λ)))
′′

(pn(λ, c; xn,k(λ)))′
=

(B̃(xn,k(λ), n)− cnÃ(xn,k(λ), n))
′

B̃(xn,k(λ), n)− cnÃ(xn,k(λ), n)
+

B̃(xn,k(λ), n)−B(xn,k(λ), n) + cnA(xn,k(λ), n)− cnφ
′(xn,k(λ))

cnφ(xn,k(λ))
.
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If we denote Q(x, n) := B̃(x, n) − cnÃ(x, n) and using (25), (28), and (29),
then

Q(x, n) = B(x, n) + cn

[
−2A(x, n) + φ′(x)− ψ(x) +

cn

γ̃n−1

B(x, n− 1)

]
. (31)

On the other hand, from (31) and (28), we obtain

B̃(x, n)− B(x, n) + cnA(x, n)− cnφ
′(x) = −cnψ(x).

Thus
(pn(λ, c; xn,k(λ)))

′′

(pn(λ, c; xn,k(λ)))′
= D [lnQ(x, n)] |x=xn,k(λ) −

ψ(xn,k(λ))

φ(xn,k(λ))
.

We consider two external fields

−
∫
ψ(x)

φ(x)
dx and lnQ(x, n).

Thus the total external potential V (x) is given by

V (x) = −
∫
ψ(x)

φ(x)
dx+ lnQ(x, n). (32)

Let us consider a system of n movable unit charges in (c, b) or (a, c), depending
on the location of the point c with respect to (a, b), in the presence of the
external potential V (x) given in (32). Let x := (x1, . . . , xn), where x1, . . . , xn
denote the location of the charges. The total energy of the system is

E(x) =
n∑

k=1

V (xk)− 2
∑

1≤j<k≤n

ln |xj − xk|.

In order to find the critical points of E(x) we set

−
∂

∂xj
E(x) = 0 ⇔

ψ(xj)

φ(xj)
−
Q′(xj, n)

Q(xj, n)
+ 2

∑

1≤k≤n,k 6=j

1

xj − xk
= 0, j = 1, . . . , n.

(33)
Let f(y) := (y − x1) · · · (y − xn). Thus,

ψ(xj)

φ(xj)
−
Q′(xj, n)

Q(xj , n)
+
f ′′(xj)

f ′(xj)
= 0, j = 1, . . . , n,

or, equivalently,

f ′′(y) +
B(y;n)

A(y;n)
f ′(y) = 0, y = x1, . . . , xn.

Therefore

f ′′(y) +
B(y;n)

A(y;n)
f ′(y) +

C(y;n)

A(y;n)
f(y) = 0, y = x1, . . . , xn. (34)
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On the other hand, from (3) and (34) we obtain f(y) = pn(λ, c; y), which
means that the zeros of pn(λ, c; x) satisfy (33).

4.2 Electrostatic interpretation of the zeros of Laguerre type orthogonal poly-
nomials

We give an electrostatic interpretation for the zeros of Laguerre type polynomi-
als p(α)n (λ, c; x) which are orthogonal with respect to the measure dµ(λ, c; x) =
xαe−xdx+ λδ(x− c), where c ≤ 0 and λ ≥ 0.

We analyze two cases:

1. First, we consider c = 0. Thus, the polynomials p(α)n (λ, 0; x) are orthogonal
with respect to

dµ(λ, 0; x) = xαe−xdx+ λδ(x).

The measure

dµ1(x) = xα+1e−xdx

satisfies a Pearson equation with (see (20))

φ(x) = σ(x) = x, ψ(x) = σ̄(x) + τ(x) = α + 2− x.

On the other hand, the structure relation (21) reads (see [40])

φ(x)D
(
p(α+1)
n (x)

)
= A(x, n)p(α+1)

n (x) + B(x, n)p
(α+1)
n−1 (x),

where

φ(x) = x, A(x, n) = n, B(x, n) = n+ α + 1.

The coefficients (13) and (22) are

γ̃n = n(n+ α + 1),

cn = −
1 + λKn(0, 0)

1 + λKn−1(0, 0)

p
(α)
n−1(0)

p
(α)
n (0)

n(n+ α)

=
n!Γ(α + 1)Γ(α + 2) + λΓ(n+ α + 2)

(n− 1)!Γ(α + 1)Γ(α + 2) + λΓ(n+ α + 1)

As a conclusion, Q(x, n) in (31) becomes

Q (x, n) = n(n+ α + 1)− cn (2n+ 1 + α− cn) + cnx

with zero

un = (2n+ 1 + α− cn)−
n(n+ α + 1)

cn
.
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It is easy to see that 0 < cn < n+α+1. Thus, Q(0, n) < 0 and it implies that
un > 0.

The electrostatic interpretation of the distribution of zeros means that we have
an equilibrium position under the presence of an external potential

ln Q(x, n)− ln xα+2e−x,

where the first term represents a short range potential corresponding to a unit
charge located at un and the second one is a long range potential associated
with the weight function (see also [18] and [19]).

2. Now, we take c < 0. In this case dµ1(x) = (x− c)xαe−xdx. Thus,

the structure relation (21) for dµ1(x) is

φ(x)D(qn(c; x)) = A(x, n)qn(c; x) + B(x, n)qn−1(c; x),

where

φ(x) = (x− c)x,

A(x, n) = n

[
x− (n+ 1 + an)

(
1 +

n+ α

an−1

)]
,

B(x, n) =
n (n+ α)

an−1

[anx− (n+ 1 + an) (n+ 1 + an + α)] .

From (4) we obtain

(x− c) qn(c; x) = p
(α)
n+1(x)−

p
(α)
n+1(c)

p
(α)
n (c)

p(α)n (x).

Taking derivatives with respect to x in both hand sides of the above expression,
and multiplying the resulting expression by x, we derive

xqn(c; x) + x (x− c)D (qn(c; x)) = xD
(
p
(α)
n+1(x)

)
−
p
(α)
n+1(c)

p
(α)
n (c)

xD
(
p(α)n (x)

)
.

Using the structure relation and the three therm recurrence relation for La-
guerre polynomials we obtain

xqn(c; x) + x (x− c)D (qn(c; x)) =

(n+ 1) p
(α)
n+1(x) + (n+ 1) (n+ 1 + α) p(α)n (x)

−
p
(α)
n+1(c)

p
(α)
n (c)

[
np(α)n (x) + n (n+ α) p

(α)
n−1(x)

]
,
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or

xqn(c; x) + x (x− c)Dqn(c; x) =


(n+ 1) (x− n)−

np
(α)
n+1(c)

p
(α)
n (c)


 p(α)n (x)

−


n (n+ 1) (n+ α) + n (n+ α)

p
(α)
n+1(c)

p
(α)
n (c)


 p(α)n−1(x).

Put

an =
p
(α)
n+1 (c)

p
(α)
n (c)

and, from (15),

p(α)n (x) = qn(c; x)−
γn

an−1

qn−1(c; x),

we have

xqn(c; x) + x (x− c)D (qn(c; x)) = ((x− n) (n+ 1)− nan) qn(c; x)

−

[
((n+ 1) (x− n)− nan)

n (n+ α)

an−1

+ n (n+ α) (n+ 1 + an)

]
qn−1(c; x)

+ n (n− 1) (n+ α) (n− 1 + α) (n+ 1 + an)
qn−2(c; x)

an−2

.

Using (22) and (23)

γ̃n−1

γn−1

=
p(α)n (c)

p
(α)
n−1(c)

p
(α)
n−2(c)

p
(α)
n−1(c)

we obtain

an−1

an−2

=
γ̃n−1

(n− 1) (n− 1 + α)

(n− 1) (n− 1 + α)

an−2

=
γ̃n−1

an−1

and, then,

xqn(c; x) + x (x− c)D (qn(c; x)) =[
((n+ 1) (x− n)− nan)−

n (n+ α) (n+ 1 + an)

an−1

]
qn(c; x)

+ n (n+ α)

[
1

an−1

(n+ 1 + an)
(
x− β̃n−1

)

−
1

an−1

((n+ 1) (x− n)− nan)− (n+ 1 + an)

]
qn−1(c; x).

Therefore,

φ(x)D(qn(c; x)) = A(x, n)qn(c; x) + B(x, n)qn−1(c; x),
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where

φ(x) = x (x− c)

A(x, n) = ((n+ 1) (x− n)− nan)−
n (n+ α) (n+ 1 + an)

an−1

− x

B(x, n) = n (n+ α)

[
1

an−1

(n+ 1 + an)
(
x− β̃n−1

)

−
1

an−1

((n+ 1) (x− n)− nan)− (n+ 1 + an)

]
.

Simplifying these expressions we derive

A(x, n) = n

[
x− (n+ 1 + an)

(
1 +

n+ α

an−1

)]
,

B(x, n) = n (n+ α)

[
an

an−1

x+
n+ 1 + an

an−1

(
n− β̃n−1

)
− (n+ 1 + an)

]
.

In the last expression, using again (23)

β̃n = βn+1 + an+1 − an = 2n+ α + 3 + an+1 − an

we obtain

B(x, n) =
n (n+ α)

an−1

[anx− (n+ 1 + an) (n+ 1 + an + α)] .

This is an alternative approach to the method described in [29]. Notice that
the Pearson equation for the linear functional associated with the measure
becomes

D (φu1) = ψu1

where (see (19))

φ(x) = (x− c)σ(x) = (x− c)x,

ψ(x) = 2σ(x) + (x− c)τ(x) = 2x+ (x− c) (α + 1− x) .

According to (23) and (24),

β̃n−1 = βn + an − an−1, and γ̃n−1 =
an−1

an−2

γn−1.

This means that Q(x, n) in (31) is the following quadratic polynomial

Q (x, n) = cnx
2 + rnx+ sn
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with

rn = n (n+ α)
an

an−1

+ c2n − cn (c+ α + 1 + 2n)

= (cn + an) (cn − an)− (cn − an) c− (cn + an) (2n+ α + 1)

and

sn = (n+ 1 + an) [(n+ 1 + an + α) (2n+ 1 + an + α− c− 2cn) + 2ccn]

+ cαcn + c2n (an − an−1 + 1− c) .

The zeros of this polynomial are

z1,n = −
1

2cn

(
rn +

√
r2n − 4sncn

)
,

z2,n = −
1

2cn

(
rn −

√
r2n − 4sncn

)
.

Taking into account
ψ(x)

φ(x)
=

2

x− c
+
α + 1

x
− 1,

the electrostatic interpretation means that the equilibrium position for the
zeros under the presence of an external potential

ln Q(x, n)− ln (x− c)2 xα+1e−x,

where the first one is a short range potential corresponding to two unit charges
located at z1,n and z2,n and the second one is a long range potential associated
with a polynomial perturbation of the weight function.

4.3 Electrostatic interpretation for the zeros of Jacobi type orthogonal poly-
nomials

We furnish an electrostatic interpretation for the zeros of Jacobi type polyno-
mials p(α,β)n (λ, c; x) which are orthogonal with respect to the measure

dµ(λ, c; x) = (1− x)α(1 + x)βdx+ λδ(x− c),

with c 6∈ (−1, 1) and λ ≥ 0.

For this propose we separate in two cases:

1. First, we consider c = −1. Thus, the polynomials p(α,β)n (λ,−1; x) are or-
thogonal with respect to

dµ(λ,−1; x) = (1− x)α(1 + x)βdx+ λδ(x+ 1).
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The measure

dµ1(x) = (x− (−1))dµ(x) = (1− x)α(1 + x)β+1dx

satisfies a Pearson equation with (see (20))

φ(x) = σ(x) = 1− x2, ψ(x) = σ̄(x) + τ(x) = (β − α + 1)− (α + β + 3) x.

On the other hand, the structure relation (21) reads

φ(x)D
(
p(α,β+1)
n (x)

)
= A(x, n)p(α,β+1)

n (x) + B(x, n)p
(α,β+1)
n−1 (x),

where

A(x, n) =
−n[β − α + 1 + (2n+ α + β + 1)x]

2n+ α + β + 1
,

B(x, n) =
4n(n+ α)(n+ β + 1)(n+ α + β + 1)

(2n+ α + β + 1)2(2n+ α + β)
.

The coefficient γ̃n in (22) when qn(−1; x) = p(α,β+1)
n (x) is

γ̃n = γα,β+1
n =

4n(n+ α)(n+ β + 1)(n+ α + β + 1)

(2n+ α + β)(2n+ α + β + 1)2(2n+ α + β + 2)

and

cn =
1 + λKn(−1,−1)

1 + λKn−1(−1,−1)

2n(n+ α)

(2n+ α + β)(2n+ α + β + 1)
> 0,

Thus,

Q(x, n) = B(x, n)+

cn

[
(2n+ α + β)cn −

(α + β + 1)(β − α + 1)

2n+ α + β + 1

]
+ (2n+ α + β + 1)cnx.

Observe that the zero of Q(x, n) belongs to (−1, 1). In fact, after some tedious
calculations we see that

Q(1) =

B(1, n) + cn

[
(2n+ α + β)cn +

2(2n(n+ α + β + 1) + α(α + β + 1))

2n+ α + β + 1

]
> 0,

and

Q(−1) =
−2α+β+3(β + 1)Γ(n)Γ(n+ α)Γ(β + 2)2Γ(n+ β + 1)Γ(n+ α + β + 1)λ

2n+ α + β

×
1

2α+β+1Γ(n)Γ(n+ α)Γ(β + 1)Γ(β + 2) + λΓ(n+ β + 1)Γ(n+ α + β + 1)
< 0.
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Using some known properties of the Jacobi polynomials we conclude that

un = −1 + 2λ
n(n+ α)

(
p(α,β)n (−1)

)2/
∥∥∥p(α,β)n

∥∥∥
2

µ

(2n+ α + β + 1)2 (1 + λKn (−1,−1))

×




(
p(α,β)n (−1)

)2/
∥∥∥p(α,β)n

∥∥∥
2

µ

Kn−1 (−1,−1) (1 + λKn−1 (−1,−1))


 .

The electrostatic interpretation means that the equilibrium position for the
zeros under the presence of an external potential

lnQ(x, n)− ln (1− x)α+1(1 + x)β+2,

where the first one is a short range potential corresponding to a unit charge
located at the zero of Q(x, n) and the other one is a long range potential
associated with the weight function.

2. We take c < −1. Then,

dµ1(x) = (x− c)(1− x)α(1 + x)βdx

and the structure relation (21) for the above measure is

φ(x)D(qn(c; x)) = A(x, n)qn(c; x) + B(x, n)qn−1(c; x),

where

φ(x) = (x− c)(1− x2),

A(x, n) = an+1(x− βn) + bn+1 − λnan − (an+1γn + λnbn)
1

λn−1

− 1 + x2,

B(x, n) = (an+1(x− βn) + bn+1 − λnan)
γn

λn−1

+ an+1γn + λnbn

−(an+1γn + λnbn)
x− β̃n−1

λn−1

.

Put

λn = λα,βn (c) =
p
(α,β)
n+1 (c)

p
(α,β)
n (c)

. (35)

From (4) we obtain

(x− c) qn(c; x) = p
(α,β)
n+1 (x)− λnp

(α,β)
n (x).
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Taking derivatives with respect to x in both hand sides of the above expression,
and multiplying them by 1− x2 , we see that

(1− x2)qn(c; x) + (x− c) (1− x2)D (qn(c; x))

= (1− x2)D
(
p
(α,β)
n+1 (x)

)
− λn(1− x2)D

(
p(α,β)n (x)

)
.

Since

(1− x2)D
(
p(α,β)n (x)

)
= anp

(α,β)
n (x) + bnp

(α,β)
n−1 (x),

where

an = aα,βn (x) =
−n[β − α + (2n+ α + β)x]

2n+ α + β
,

bn = bα,βn =
4n(n+ α)(n+ β)(n+ α + β)

(2n+ α + β)2(2n+ α + β − 1)
,

we obtain

(1− x2)qn(c; x) + (x− c) (1− x2)D (qn(c; x))

= an+1p
(α,β)
n+1 (x) + (bn+1 − λnan) p

(α,β)
n (x)− λnbnp

(α,β)
n−1 (x).

The three terms recurrence relation of monic Jacobi polynomials implies

(1− x2)qn(c; x) + (x− c) (1− x2)D (qn(c; x))

= [an+1(x− βn) + bn+1 − λnan] p
(α,β)
n (x)− (an+1γn + λnbn)p

(α,β)
n−1 (x).

From (15) and (35),

p(α,β)n (x) = qn(c; x)−
γn

λn−1

qn−1(c; x).

Then

(1− x2)qn(c; x) + (x− c) (1− x2)D (qn(c; x))

= [an+1(x− βn) + bn+1 − λnan] qn(c; x)

−

[
(an+1(x− βn) + bn+1 − λnan)

γn

λn−1

+ an+1γn + λnbn

]
qn−1(c; x)

(an+1γn + λnbn)
γn−1

λn−2

qn−2(c; x).
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From (22) for monic kernels,

(1− x2)qn(c; x) + (x− c) (1− x2)D (qn(c; x))

= [an+1(x− βn) + bn+1 − λnan] qn(c; x)

−

[
(an+1(x− βn) + bn+1 − λnan)

γn

λn−1

+ an+1γn + λnbn

]
qn−1(c; x)

(an+1γn + λnbn)
γn−1

λn−2

(x− β̃n−1)qn−1(c; x)− qn(c; x)

γ̃n−1

.

According to (23) and (35), we obtain

γ̃n−1

γn−1

=
λn−1

λn−2

.

Therefore

(1− x2)qn(c; x) + (x− c) (1− x2)D (qn(c; x))

=
[
an+1(x− βn) + bn+1 − λnan − (an+1γn + λnbn)

1
λn−1

]
qn(c; x)

−
[
(an+1(x− βn) + bn+1 − λnan)

γn
λn−1

+ an+1γn + λnbn

−(an+1γn + λnbn)
x− β̃n−1

λn−1

]
qn−1(c; x).

Thus
φ(x)D(qn(c; x)) = A(x, n)qn(c; x) + B(x, n)qn−1(c; x),

where

φ(x)= (x− c)(1− x2),

A(x, n)= an+1(x− βn) + bn+1 − λnan − (an+1γn + λnbn)
1

λn−1

− 1 + x2,

B(x, n)= (an+1(x− βn) + bn+1 − λnan)
γn

λn−1

+ an+1γn + λnbn

−(an+1γn + λnbn)
x− β̃n−1

λn−1

.

Simplifying these expressions we have

A(x, n) = An,0 + An,1x+ An,2x
2

and

B(x, n) = Bn,0 + Bn,1x+Bn,2x
2.
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Notice that the Pearson equation for the linear functional associated with the
measure

dµ1(x) = (x− c)(1− x)α(1 + x)βdx

becomes

D (φu1) = ψu1,

with (see (19))

φ(x) = (x− c)σ(x) = (x− c)(1− x2),

ψ(x) = 2σ(x) + (x− c)τ(x) = 2(1− x2) + (x− c)(β − α− (α + β + 2)x),

which means that Q (x, n) is the following quadratic polynomial

Q (x, n) = B(x, n) + cn

[
−2A(x, n) + φ′(x)− ψ(x) +

cn

γ̃n−1

B(x, n− 1)

]

=

[
Bn,2 +

(
α + β + 1− 2An,2 +

cnBn−1,2

γ̃n−1

)
cn

]
x2

+

{
c2nBn−1,1

γ̃n−1

+ Bn,1 − [α(c− 1) + β(c+ 1) + 2An,1]cn

}
x

+Bn,0 − [2An,0 + 1 + c(α− β)]cn +
c2nBn−1,0

γ̃n−1

.

Taking into account

ψ(x)

φ(x)
=

2

x− c
−
α + 1

1− x
+
β + 1

1 + x
,

the electrostatic interpretation means that the equilibrium position for the
zeros under the presence of an external potential

ln Q(x, n)− ln (x− c)2 (1− x)α+1(1 + x)β+1,

where the first one is a short range potential corresponding to two unit charges
located at the zeros of Q(x, n) and the second one is a long range potential
associated with a polynomial perturbation of the weight function.
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[13] F. A. Grünbaum, Variations on a theme of Heine and Stieltjes: an electrostatic

interpretation of the zeros of certain polynomials, J. Comput. Appl. Math. 99
(1998), 189–194.
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[16] J. J. Guadalupe , M. Pérez, F. J. Ruiz, and J. L. Varona, Asymptotic behaviour

of ortoghonal polynomials relative to measures with mass points, Mathematika
40 (1993), 331–344.

31



[17] M. E. H. Ismail, An electrostatics model for zeros of general orthogonal

polynomials, Pacific J. Math. 193 (2000), 355–369.

[18] M. E. H. Ismail, More on electrostatic models for zeros of orthogonal

polynomials, Numer. Funct. Anal. Optimiz. 21 (2000), 191–204.

[19] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One

Variable, Encyclopedia of Mathematics and its Applications, Vol. 98.
Cambridge University Press, Cambridge UK. 2005.

[20] J. Koekoek and R. Koekoek, On a differential equation for Koornwinder’s

generalized Laguerre polynomials, Proc. Amer. Math. Soc. 112 (1991), 1045–
1054.

[21] J. Koekoek and R. Koekoek, Differential equations for generalized Jacobi

polynomials, J. Comput. Appl. Math. 126 (2000), 1–31.

[22] R. Koekoek, Generalizations of classical Laguerre polynomials and some q-

analogues, Doctoral Dissertation, Techn. Univ. of Delft, The Netherlands, 1990.

[23] T. H. Koornwinder, Orthogonal polynomials with weight function (1− x)α(1 +
x)β +Mδ(x+ 1) +Nδ(x− 1), Canad. Math. Bull. 27 (1984), 205–214.

[24] A. M. Krall, Orthogonal Polynomials satisfying fourth order differential

equations, Proc. Roy. Soc. Edinburgh Sect A 87 (1980/81), 271–288.

[25] H. L. Krall, On orthogonal polynomials satisfying a certain fourth order

differential equation, Pennsylvania State College Studies 6 (1940). 24 pp.

[26] F. Marcellán and P. Maroni, Sur l’ adjonction d’ une masse de Dirac à une
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