Asymptotic behaviour of the Laguerre-Sobolev-Type Orthogonal Polynomials. A nondiagonal case.

Herbert Dueñas^{1,2}, Francisco Marcellán ¹

¹ Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911, Leganés, Spain.

² Universidad Nacional de Colombia, Departamento de Matemáticas Ciudad Universitaria, Bogotá, Colombia

To professor Adhemar Bultheel with occasion of his 60th birthday

Abstract

In this paper we study the asymptotic behaviour of polynomials orthogonal with respect to a Sobolev-Type inner product

$$\langle p, q \rangle_S = \int_0^\infty p(x)q(x)x^\alpha e^{-x}dx + \mathbb{P}(0)^t A\mathbb{Q}(0), \ \alpha > -1,$$

where p and q are polynomials with real coefficients,

$$A = \begin{pmatrix} M_0 & \lambda \\ \lambda & M_1 \end{pmatrix}, \ \mathbb{P}(0) = \begin{pmatrix} p(0) \\ p'(0) \end{pmatrix}, \ \mathbb{Q}(0) = \begin{pmatrix} q(0) \\ q'(0) \end{pmatrix},$$

and A is a positive semidefinite matrix.

We will focus our attention on their outer relative asymptotics with respect to the standard Laguerre polynomials as well as on an analog of the Mehler-Heine formula for the rescaled polynomials.

Key words: Quasi-orthogonal polynomials, Laguerre Polynomials, Sobolev type inner products, outer relative asymptotics, Bessel functions, Mehler-Heine formula. 2000 AMS classification: 42C05, 33C47.

Email addresses: haduenasr@unal.edu.co (Herbert Dueñas), pacomarc@ing.uc3m.es (Francisco Marcellán).

1 Introduction.

Orthogonal polynomials with respect to a Sobolev-Type inner product

$$\langle p, q \rangle = \int_{\mathbb{R}} p(x)q(x)d\mu(x) + \mathbb{P}(c)^t A\mathbb{Q}(c),$$
 (1)

where $d\mu$ is a nontrivial probability measure supported on the real line, $A \in \mathbb{R}^{(k,k)}$ is a positive semidefinite matrix, p,q are polynomials with real coefficients, and $\mathbb{Q}(c) = \left(q(c), q'(c), \ldots, q^{(k-1)}(c)\right)^t$ have been introduced in [1].

When $A = diag(M_0, M_1, ..., M_{k-1})$, the so-called diagonal Sobolev-Type case, many researchers were interested in the analytic properties of the polynomials orthogonal respect with (1). In particular, R. Koekoek [10] studied the second order linear differential equation satisfied by such orthogonal polynomials when $d\mu = x^{\alpha}e^{-x}dx$, $\alpha > -1$, and c = 0. They also satisfy a higher order recurrence relation as well as they can be represented as hypergeometric functions.

Later on, when k = 2 and $M_0, M_1 > 0$, in [11] the authors focus the attention in the location of the zeros of such orthogonal polynomials that are called Laguerre-Sobolev Type orthogonal polynomials. Finally, the analysis of their asymptotic properties was done in [3] as well in [13].

On the other hand, when $k \geq 2$ if $d\mu = x^{\alpha}e^{-x}dx$, c = 0, and $M_0 = M_1 = \cdots = M_{k-2} = 0$, $M_{k-1} > 0$ then the same analog problems were studied in [15] in the framework of the zero distribution. From an algebraic point of view and for more general measures, in [14] the authors deal with representations of Sobolev-Type orthogonal polynomials in terms of the polynomials orthogonal with respect to the measure μ assuming the same constraints for the inner product (1) as above.

The first situation of a non-diagonal Sobolev type inner product like (1) was considered in [2]. Here the authors deal with the measure $d\mu = e^{-x^2}dx$ supported on \mathbb{R} , c = 0, and k = 2. In particular, they analyze scaled asymptotics for the corresponding orthogonal polynomials (Mehler-Heine formulas) and, as a consequence, the asymptotic behaviour of their zeros follows.

Taking into account that generalized Hermite polynomials appear as a consequence of the symmetrization process for Laguerre orthogonal polynomials ([4],[6], and [16]) it seems to be very natural to analyze polynomial sequences orthogonal with respect to the inner product (1) when $d\mu = x^{\alpha}e^{-x}dx$, $A \in \mathbb{R}^{(k,k)}$ is a nondiagonal positive semi-definite matrix with $k \geq 2$, and c = 0.

In this contribution we focus our attention in the case k=2. Thus we generalize some previous results from the diagonal case (see [3], [8], and [11]) as well as we give a nice interpretation of some results of [2] using a symmetrization process for our Laguerre-Sobolev type orthogonal polynomials.

The structure of the manuscript is the following. In section 2 we present the basic background about the properties of classical Laguerre polynomials which will be needed along the paper. Section 3 deals with the asymptotic properties of the Laguerre-Sobolev type polynomials, orthogonal with respect to the inner product

$$\langle p, q \rangle = \int_0^\infty p(x)q(x)x^\alpha e^{-x} dx + \mathbb{P}(0)^t A\mathbb{Q}(0), \ \alpha > -1,$$

 $\langle p,q\rangle = \int_0^\infty p(x)q(x)x^\alpha e^{-x}dx + \mathbb{P}(0)^t A\mathbb{Q}(0), \ \alpha > -1,$ where $A = \begin{pmatrix} M_0 & \lambda \\ \lambda & M_1 \end{pmatrix}$ is a positive semidefinite matrix and we denote $\mathbb{Q}(0) = 0$

 $(q(0), q'(0))^{t}$. We obtain the outer relative asymptotics of these polynomials in terms of Laguerre polynomials and a Mehler-Heine type formula as well as the behaviour of the Sobolev norm of the monic Laguerre-Sobolev type orthogonal polynomials.

Preliminaries.

Let $\{\mu_n\}_{n\geq 0}$ be a sequence of real numbers and let μ be the linear functional defined in the linear space P of the polynomials with real coefficients, such that

$$\langle \mu, x^n \rangle = \mu_n, \ n = 0, 1, 2, \dots$$

 μ is said to be a moment functional associated with $\{\mu_n\}_{n\geq 0}$. Furthermore μ_n is the n-th moment of the functional μ .

Given a moment functional μ , a sequence of polynomials $\{P_n\}_{n\geq 0}$ is said to be a sequence of $orthogonal\ polynomials$ with respect to μ if

- (i) The degree of P_n is n.
- (ii) $\langle \mu, P_n(x)P_m(x) \rangle = 0, m \neq n.$
- (iii) $\langle \mu, P_n^2(x) \rangle \neq 0, n = 0, 1, 2, ...$

If every polynomial $P_n(x)$ has 1 as leading coefficient, then $\{P_n\}_{n\geq 0}$ is said to be a sequence of monic orthogonal polynomials.

The next theorem, whose proof appears in [6], gives necessary and sufficient

conditions for the existence of a sequence of monic orthogonal polynomials $\{P_n\}_{n\geq 0}$ with respect to a moment functional μ associated with $\{\mu_n\}_{n\geq 0}$.

Theorem 1 ([6]) Let μ be the moment functional associated with $\{\mu_n\}_{n\geq 0}$. There exists a sequence of monic orthogonal polynomials $\{P_n\}_{n\geq 0}$ associated with μ if and only if the leading principal submatrices of the Hankel matrix $[\mu_{i+j}]_{i,j\in\mathbb{N}}$ are non singular.

A moment functional such that there exists the correspondient sequence of orthogonal polynomials is said to be regular or quasi-definite ([6]).

The proof of the next proposition can be founded in [4], [6], [9], [12], and [16].

Proposition 1 (The Christoffel-Darboux formula). Let $\{P_n\}_{n\geq 0}$ be a sequence of monic orthogonal polynomials. If we denote the n-th kernel polynomial by

$$K_n(x,y) = \sum_{j=0}^n \frac{P_j(y)P_j(x)}{\langle \mu, P_j^2 \rangle},$$

then, for every $n \in \mathbb{N}$,

$$K_n(x,y) = \frac{1}{\langle \mu, P_n^2 \rangle} \frac{P_{n+1}(x)P_n(y) - P_n(x)P_{n+1}(y)}{x - y}.$$
 (2)

Using the following notation for the partial derivatives of the kernel $K_n(x,y)$

$$\frac{\partial^{j+k} (K_n(x,y))}{\partial^j x \partial^k y} = K_n^{(j,k)}(x,y),$$

we present some properties about these derivatives. Let $\{P_n\}_{n\geq 0}$ be a sequence of monic orthogonal polynomials. From the Christoffel-Darboux Formula (2), we have

$$K_{n-1}(x,y) = \frac{1}{\langle \mu, P_{n-1}^2 \rangle} \frac{P_n(x) P_{n-1}(y) - P_{n-1}(x) P_n(y)}{x - y}.$$

The computation of the j-th partial derivative with respect to y yields

$$K_{n-1}^{(0,j)}(x,y) = \frac{1}{\langle \mu, P_{n-1}^2 \rangle} \left(P_n(x) \frac{\partial^j}{\partial y^j} \left(\frac{P_{n-1}(y)}{x-y} \right) - P_{n-1}(x) \frac{\partial^j}{\partial y^j} \left(\frac{P_n(y)}{x-y} \right) \right). \tag{3}$$

Using the Leibnitz rule

$$\frac{\partial^j}{\partial y^j} \left(\frac{P_n(y)}{x - y} \right) = \sum_{k=0}^j \frac{j!}{k!} \frac{P_n^{(k)}(y)}{(x - y)^{j-k+1}},$$

and replacing the last expression in (3), we get

$$K_{n-1}^{(0,j)}(x,y) = \frac{1}{\langle \mu, P_{n-1}^2 \rangle} \left(P_n(x) \sum_{k=0}^j \frac{j!}{k!} \frac{P_{n-1}^{(k)}(y)}{(x-y)^{j-k+1}} - P_{n-1}(x) \sum_{k=0}^j \frac{j!}{k!} \frac{P_n^{(k)}(y)}{(x-y)^{j-k+1}} \right)$$

$$= \frac{j!}{\langle \mu, P_{n-1}^2 \rangle (x-y)^{j+1}} \times \left(P_n(x) \sum_{k=0}^j \frac{1}{k!} P_{n-1}^{(k)}(y) (x-y)^k - P_{n-1}(x) \sum_{k=0}^j \frac{1}{k!} P_n^{(k)}(y) (x-y)^k \right).$$

As a consequence,

Proposition 2 ([1], [14]) For every $n \in \mathbb{N}$,

$$K_{n-1}^{(0,j)}(x,0) = \frac{j!}{\langle \mu, P_{n-1}^2 \rangle x^{j+1}} \left(P_n(x) Q_j(x,0; P_{n-1}) - P_{n-1}(x) Q_j(x,0; P_n) \right) \tag{4}$$

where $Q_j(x, 0; P_{n-1})$ and $Q_j(x, 0; P_n)$ denote the Taylor Polynomials of degree j of the polynomials P_{n-1} and P_n around x = 0, respectively.

The Laguerre orthogonal polynomials are defined as the polynomials orthogonal with respect to the inner product

$$\langle p, q \rangle = \int_0^\infty pqx^\alpha e^{-x} dx, \ \alpha > -1, \ p, q \in \mathbb{P}.$$
 (5)

We will summarize some properties of the Laguerre monic orthogonal polynomials that we will use in the sequel. The details of the proof of Proposition 3 and the Theorem 2, can be founded in [4], [6], [9], [12], and [16].

Proposition 3 Let $\{L_n^{\alpha}\}_{n\geq 0}$ be the sequence of Laguerre monic orthogonal polynomials.

(1) For every $n \in \mathbb{N}$,

$$xL_n^{\alpha}(x) = L_{n+1}^{\alpha}(x) + (2n+1+\alpha)L_n^{\alpha}(x) + n(n+\alpha)L_{n-1}^{\alpha}(x), \quad (6)$$
with $L_0^{\alpha}(x) = 1, L_1^{\alpha}(x) = x - (\alpha+1).$

(2) For every $n \in \mathbb{N}$,

$$L_n^{\alpha}(x) = L_n^{\alpha+1}(x) + nL_{n-1}^{\alpha+1}(x). \tag{7}$$

(3) For every $n \in \mathbb{N}$,

$$||L_n^{\alpha}||_{\alpha}^2 = n!\Gamma(n+\alpha+1). \tag{8}$$

(4) For every $n \in \mathbb{N}$

$$L_n^{\alpha}(0) = (-1)^n \frac{\Gamma(n+\alpha+1)}{\Gamma(\alpha+1)}.$$
 (9)

(5) For every $n \in \mathbb{N}$

$$(L_n^{\alpha})'(x) = nL_{n-1}^{\alpha+1}(x).$$
 (10)

(6) For every $n \in \mathbb{N}$,

$$x \left(L_n^{\alpha}(x) \right)' = n L_n^{\alpha}(x) + n \left(n + \alpha \right) L_{n-1}^{\alpha}(x). \tag{11}$$

In particular, for Laguerre polynomials we get

Proposition 4 For every $n \in \mathbb{N}$

$$K_{n-1}(x,0) = \frac{L_{n-1}^{\alpha}(0)L_{n-1}^{\alpha+1}(x)}{(n-1)!\Gamma(n+\alpha)},$$
(12)

$$K_{n-1}^{(0,1)}(x,0) = \frac{(-1)^n}{(n-2)!\Gamma(\alpha+2)} L_{n-1}^{\alpha+2}(x) + \frac{(-1)^n n}{(n-2)!\Gamma(\alpha+2)} L_{n-2}^{\alpha+2}(x), \quad (13)$$

$$K_{n-1}^{(1,1)}(x,0) = \frac{(-1)^n (n-1)}{(n-2)! \Gamma(\alpha+2)} L_{n-2}^{\alpha+3}(x) + \frac{(-1)^n n}{(n-3)! \Gamma(\alpha+2)} L_{n-3}^{\alpha+3}(x).$$
 (14)

The proof of (12) is given in [7]. For (13) see [8]. Finally, (14) is a consequence of (13) and (7).

Using (8) and (9) in (12), (13), and (14) we obtain

Proposition 5 For every $n \in \mathbb{N}$,

$$K_{n-1}(0,0) = \frac{\Gamma(n+\alpha+1)}{(n-1)!\Gamma(\alpha+1)\Gamma(\alpha+2)},$$
(15)

$$K_{n-1}^{(1,0)}(0,0) = -\frac{\Gamma(n+\alpha+1)}{(n-2)!\Gamma(\alpha+1)\Gamma(\alpha+3)} = -\frac{n-1}{\alpha+2}K_{n-1}(0,0),$$
(16)

$$K_{n-1}^{(1,1)}(0,0) = \frac{\Gamma(n+\alpha+1)\left(n(\alpha+2)-(\alpha+1)\right)}{(n-2)!\Gamma(\alpha+2)\Gamma(\alpha+4)} = \frac{\left(n(\alpha+2)-(\alpha+1)\right)(n-1)}{(\alpha+1)(\alpha+2)(\alpha+3)}K_{n-1}(0,0).$$
(17)

Theorem 2 (The Mehler-Heine type formula) Let J_{α} be the Bessel function defined by

$$J_{\alpha}(x) = \sum_{j=0}^{\infty} \frac{(-1)^{j} (x/2)^{2j+\alpha}}{j! \Gamma(j+\alpha+1)},$$

then

$$\lim_{n \to \infty} \frac{\widehat{L}_n^{\alpha}(x/(n+j))}{n^{\alpha}} = x^{-\alpha/2} J_{\alpha}(2\sqrt{x})$$
 (18)

uniformly on compact subsets \mathbb{C} and uniformly in $j \in \mathbb{N} \cup \{0\}$. Here $\widehat{L}_n^{\alpha}(x) = (-1)^n/n!L_n^{\alpha}(x)$.

3 Asymptotic behaviour

If p is a polynomial with real coefficients, then we will denote

$$\mathbb{P}(x) = \begin{pmatrix} p(x) \\ p'(x) \end{pmatrix}.$$

Let p and q be polynomials with real coefficients. We define the following Sobolev type inner product

$$\langle p, q \rangle_S = \int_0^\infty p(x)q(x)x^\alpha e^{-x}dx + \mathbb{P}(0)^t A\mathbb{Q}(0), \ \alpha > -1, \tag{19}$$

where

$$A = \begin{pmatrix} M_0 & \lambda \\ \lambda & M_1 \end{pmatrix},$$

 $M_0, M_1 \ge 0$, A is a positive semidefinite matrix, i.e det $A = |A| \ge 0$. Notice that if $M_0 = 0$, $M_1 > 0$ or $M_1 = 0$, $M_0 > 0$ it implies that $\lambda = 0$. These situations have been considered in some previous papers by the authors (see [7] and [8]), as well as in [3] and [8].

From (19), $\langle p,q\rangle_S$ is an inner product in the linear space \mathbb{P} of polynomials with real coefficients in the sense that

- (1) $\langle \lambda p + \mu q, r \rangle = \lambda \langle p, r \rangle_S + \mu \langle q, r \rangle$, for $p, q, r \in \mathbb{P}$ and $\lambda, \mu \in \mathbb{R}$.
- (2) $\langle p, q \rangle_S = \langle q, p \rangle_S$ for $p, q \in \mathbb{P}$.
- (3) $\langle p, p \rangle_S > 0$, for every $p \in \mathbb{P} \setminus \{0\}$.

Let $\left\{\widetilde{L}_n^{\alpha}\right\}_{n\geq 0}$ be the sequence of monic polynomials orthogonal with respect to (19). Consider the Fourier expansion of \widetilde{L}_n^{α} in terms of the sequence of Laguerre monic orthogonal polynomials $\{L_n^{\alpha}\}_{n\geq 0}$

$$\widetilde{L}_{n}^{\alpha}(x) = L_{n}^{\alpha}(x) + \sum_{k=0}^{n-1} a_{n,k} L_{k}^{\alpha}(x),$$

where

$$a_{n,k} = \frac{\left\langle \widetilde{L}_n^{\alpha}(x), L_k^{\alpha}(x) \right\rangle_{\alpha}}{\left\| L_k^{\alpha} \right\|_{\alpha}^2}, \ 0 \le k \le n - 1.$$

From (19), we get

$$a_{n,k} = -\frac{\left(\widetilde{\mathbb{L}}_n^{\alpha}(0)\right)^t A \mathbb{L}_k^{\alpha}(0)}{\left\|L_k^{\alpha}\right\|_{\alpha}^2}.$$

As a consequence,

$$\begin{split} \widetilde{L}_{n}^{\alpha}(x) &= L_{n}^{\alpha}(x) - \sum_{k=0}^{n-1} \frac{\left(\widetilde{\mathbb{L}}_{n}^{\alpha}(0)\right)^{t} A \mathbb{L}_{k}^{\alpha}(0)}{\left\|L_{k}^{\alpha}\right\|_{\alpha}^{2}} L_{k}^{\alpha}(x) \\ &= L_{n}^{\alpha}(x) - \left(\widetilde{\mathbb{L}}_{n}^{\alpha}(0)\right)^{t} A \sum_{k=0}^{n-1} \frac{\mathbb{L}_{k}^{\alpha}(0) L_{k}^{\alpha}(x)}{\left\|L_{k}^{\alpha}\right\|_{\alpha}^{2}}, \end{split}$$

i.e

$$\widetilde{L}_{n}^{\alpha}(x) = L_{n}^{\alpha}(x) - \left(\widetilde{\mathbb{L}}_{n}^{\alpha}(0)\right)^{t} A \begin{pmatrix} K_{n-1}(x,0) \\ K_{n-1}^{(0,1)}(x,0) \end{pmatrix}.$$
(20)

From the above expression we obtain

$$\widetilde{L}_{n}^{\alpha}(0) = L_{n}^{\alpha}(0) - \left(\widetilde{\mathbb{L}}_{n}^{\alpha}(0)\right)^{t} A \begin{pmatrix} K_{n-1}(0,0) \\ K_{n-1}^{(0,1)}(0,0) \end{pmatrix},$$

$$\left(\widetilde{L}_{n}^{\alpha}\right)'(0) = \left(L_{n}^{\alpha}\right)'(0) - \left(\widetilde{\mathbb{L}}_{n}^{\alpha}(0)\right)^{t} A \begin{pmatrix} K_{n-1}^{(1,0)}(0,0) \\ K_{n-1}^{(1,1)}(0,0) \end{pmatrix}.$$

Thus

$$\left(\widetilde{\mathbb{L}}^{\alpha}(0)\right)^{t} = \left(\mathbb{L}^{\alpha}(0)\right)^{t} - \left(\widetilde{\mathbb{L}}^{\alpha}(0)\right)^{t} A \mathbb{K}_{n-1}(0,0), \tag{21}$$

where

$$\mathbb{K}_{n-1}(0,0) = \begin{pmatrix} K_{n-1}(0,0) & K_{n-1}^{(1,0)}(0,0) \\ K_{n-1}^{(0,1)}(0,0) & K_{n-1}^{(1,1)}(0,0) \end{pmatrix}.$$

As a consequence, from (21)

$$\left(\widetilde{\mathbb{L}}^{\alpha}(0)\right)^{t} \left(I + A\mathbb{K}_{n-1}(0,0)\right) = \left(\mathbb{L}^{\alpha}(0)\right)^{t},\tag{22}$$

where I is the 2×2 identity matrix. Notice that

$$I + A\mathbb{K}_{n-1}(0,0) =$$

$$K_{n-1}(0,0) \left[\begin{pmatrix} \frac{1}{K_{n-1}(0,0)} & 0\\ 0 & \frac{1}{K_{n-1}(0,0)} \end{pmatrix} + A \begin{pmatrix} 1 & -\frac{n-1}{\alpha+2}\\ -\frac{n-1}{\alpha+2} & \frac{(n(\alpha+2)-(\alpha+1))(n-1)}{(\alpha+1)(\alpha+2)(\alpha+3)} \end{pmatrix} \right]$$

$$= K_{n-1}(0,0) \begin{pmatrix} G H\\ J K \end{pmatrix},$$

where

$$\begin{split} G &= \frac{1}{K_{n-1}(0,0)} + \left(M_0 + \frac{\lambda}{\alpha+2}\right) - \frac{n\lambda}{\alpha+2} \\ H &= \frac{\lambda n^2}{(\alpha+1)(\alpha+3)} - \left(\frac{M_0}{\alpha+2} + \frac{(2\alpha+3)\lambda}{(\alpha+1)(\alpha+2)(\alpha+3)}\right) n + \\ &\left(\frac{M_0}{\alpha+2} + \frac{\lambda}{(\alpha+2)(\alpha+3)}\right) \\ J &= -\frac{M_1}{\alpha+2} n + \left(\lambda + \frac{M_1}{\alpha+2}\right) \\ K &= \frac{M_1 n^2}{(\alpha+1)(\alpha+3)} - \left(\frac{\lambda}{\alpha+2} + \frac{(2\alpha+3)M_1}{(\alpha+1)(\alpha+2)(\alpha+3)}\right) n + \\ &\left(\frac{\lambda}{\alpha+2} + \frac{M_1}{(\alpha+2)(\alpha+3)}\right) + \frac{1}{K_{n-1}(0,0)}. \end{split}$$

On the other hand

$$|I + A\mathbb{K}_{n-1}(0)| =$$

$$\begin{split} &(K_{n-1}(0,0))^2 \left[\frac{1}{(K_{n-1}(0,0))^2} + \frac{1}{K_{n-1}(0,0)} traza \left[A \left(\begin{array}{c} 1 & -\frac{n-1}{\alpha+2} \\ -\frac{n-1}{\alpha+2} & \frac{(n(\alpha+2)-(\alpha+1))(n-1)}{(\alpha+1)(\alpha+2)(\alpha+3)} \end{array} \right) \right] \\ &+ |A| \left(\frac{(n(\alpha+2)-(\alpha+1))(n-1)}{(\alpha+1)(\alpha+2)(\alpha+3)} - \frac{(n-1)^2}{(\alpha+2)^2} \right) \right] \\ &= 1 + K_{n-1}(0,0) \left(M_1 \frac{(n(\alpha+2)-(\alpha+1))(n-1)}{(\alpha+1)(\alpha+2)(\alpha+3)} - \frac{2\lambda}{\alpha+2} (n-1) + M_0 \right) + \\ |A| \frac{n-1}{\alpha+2} \left(\frac{(n(\alpha+2)-(\alpha+1))}{(\alpha+1)(\alpha+3)} - \frac{n-1}{\alpha+2} \right) (K_{n-1}(0,0))^2 \\ &= 1 + K_{n-1}(0,0) \left(M_1 \frac{(n(\alpha+2)-(\alpha+1))(n-1)}{(\alpha+1)(\alpha+2)(\alpha+3)} - \frac{2\lambda}{\alpha+2} (n-1) + M_0 \right) + \\ (K_{n-1}(0,0))^2 |A| \frac{n-1}{\alpha+2} \left(\frac{n}{(\alpha+1)(\alpha+2)(\alpha+3)} + \frac{1}{(\alpha+2)(\alpha+3)} \right). \end{split}$$

Thus, if |A| > 0 we get

$$|I + A\mathbb{K}_{n-1}(0,0)| \sim \frac{|A| \, n^{2\alpha+4}}{(\alpha+1)(\alpha+2)^2(\alpha+3)},$$
 (23)

and, if $|A| = 0, M_1 > 0$,

$$|I + A\mathbb{K}_{n-1}(0,0)| \sim \frac{n^{\alpha+3}M_1}{(\alpha+1)(\alpha+3)}.$$
 (24)

As a consequence, from (20) and (22)

$$\widetilde{L}_n^{\alpha}(x) =$$

$$\begin{split} &L_{n}^{\alpha}(x)-\left(\mathbb{L}_{n}^{\alpha}(0)\right)^{t}\left(I+A\mathbb{K}_{n-1}(0)\right)^{-1}A\begin{pmatrix}\frac{(-1)^{n-1}(\alpha+1)}{(n-1)!\Gamma(\alpha+2)} & 0\\ \frac{(-1)^{n}}{(n-2)!\Gamma(\alpha+2)} & \frac{(-1)^{n}}{(n-2)!\Gamma(\alpha+2)} \end{pmatrix}\begin{pmatrix}L_{n-1}^{\alpha+1}(x)\\ L_{n-2}^{\alpha+2}(x)\end{pmatrix}\\ &=L_{n}^{\alpha}(x)-\frac{(-1)^{n}}{(n-2)!\Gamma(\alpha+2)K_{n-1}(0,0)}\begin{pmatrix}(-1)^{n}\frac{\Gamma(n+\alpha+1)}{\Gamma(\alpha+1)}\\ (-1)^{n-1}\frac{n\Gamma(n+\alpha+1)}{\Gamma(\alpha+1)}\end{pmatrix}^{t}\begin{pmatrix}G\\J\\K\end{pmatrix}^{-1}A\times\\ &\begin{pmatrix}-\frac{\alpha+1}{n-1}&0\\1&1\end{pmatrix}\begin{pmatrix}L_{n-1}^{\alpha+1}(x)\\ L_{n-2}^{\alpha+2}(x)\end{pmatrix}, \end{split}$$

thus

$$\tilde{L}_n^{\alpha}(x) = \tag{25}$$

$$=L_n^\alpha(x)+\left(\frac{-1}{\frac{n}{\alpha+1}}\right)^t\left(\frac{G}{J}\frac{H}{K}\right)^{-1}A\left(\frac{-(\alpha+1)}{n-1}\frac{0}{n-1}\right)\left(\frac{L_{n-1}^{\alpha+1}(x)}{L_{n-2}^{\alpha+2}(x)}\right).$$

Furthermore, if we denote

$$M = \begin{pmatrix} G & H \\ J & K \end{pmatrix},$$

we get

$$M^{-1} = \frac{1}{|M|} \begin{pmatrix} K & -H \\ -J & G \end{pmatrix},$$

where

$$|M| = \frac{1}{(K_{n-1}(0,0))^2} |I + A\mathbb{K}_{n-1}(0,0)|.$$

Therefore, from (25), after some computations we get

$$\widetilde{L}_n^{\alpha}(x) = \tag{26}$$

$$= L_n^{\alpha}(x) + \frac{1}{|M|} \left(\widetilde{A}_n n^2 + B_n n + C_n \ \widetilde{A}'_n n^2 + B'_n n + C'_n \right) \begin{pmatrix} L_{n-1}^{\alpha+1}(x) \\ L_{n-2}^{\alpha+2}(x) \end{pmatrix},$$

with

$$\widetilde{A}_{n} = \frac{2|A|}{(\alpha+1)(\alpha+2)(\alpha+3)} + \frac{M_{1}}{(\alpha+1)K_{n-1}(0,0)}$$

$$B_{n} = \frac{2\alpha|A|}{(\alpha+1)(\alpha+2)(\alpha+3)} - \frac{2\lambda}{K_{n-1}(0,0)} - \frac{M_{1}}{(\alpha+1)K_{n-1}(0,0)}$$

$$\widetilde{A}'_{n} = \frac{|A|}{(\alpha+1)(\alpha+2)} + \frac{M_{1}}{(\alpha+1)K_{n-1}(0,0)}$$

$$B'_{n} = \frac{\alpha|A|}{(\alpha+1)(\alpha+2)} - \frac{\lambda}{K_{n-1}(0,0)} - \frac{M_{1}}{(\alpha+1)K_{n-1}(0,0)},$$

and C_n and C'_n depend of M_0, M_1, λ , and α .

Let

$$\widehat{L}_n^{\alpha}(x) = \frac{(-1)^n}{n!} L_n^{\alpha}(x)$$

$$\widehat{\widetilde{L}}_n^{\alpha}(x) = \frac{(-1)^n}{n!} \widetilde{L}_n^{\alpha}(x),$$

then, from (26)

$$\widehat{\widetilde{L}}_{n}^{\alpha}(x) = \tag{27}$$

$$\widehat{L}_{n}^{\alpha}(x) + \frac{1}{|M|} \left(\widetilde{A}_{n} n^{2} + B_{n} n + C_{n} \ \widetilde{A}'_{n} n^{2} + B'_{n} n + C'_{n} \right) \begin{pmatrix} -\frac{1}{n} \widehat{L}_{n-1}^{\alpha+1}(x) \\ \frac{1}{n(n-1)} \widehat{L}_{n-2}^{\alpha+2}(x) \end{pmatrix}$$

$$= \widehat{L}_{n}^{\alpha}(x) + \frac{1}{|M|} \left(\widetilde{A}_{n} n + B_{n} + \frac{C_{n}}{n} \ \widetilde{A}'_{n} n + B'_{n} + \frac{C'_{n}}{n} \right) \begin{pmatrix} -\widehat{L}_{n-1}^{\alpha+1}(x) \\ \frac{1}{n-1} \widehat{L}_{n-2}^{\alpha+2}(x) \end{pmatrix}.$$

On the other hand, since

$$|M| = \tag{28}$$

$$\frac{1}{(K_{n-1}(0,0))^2} + \frac{1}{(K_{n-1}(0,0))} \left(\frac{M_1}{(\alpha+1)(\alpha+3)} n^2 + Rn + T \right)
+ |A| \left(\frac{n^2}{(\alpha+1)(\alpha+2)^2(\alpha+3)} + R'n + T' \right),$$

where R, T, R', and T'depend only of M_0, M_1, λ , and α ; and, assuming that |A| > 0, we get

$$|M| \sim \frac{|A|}{(\alpha+1)(\alpha+2)^2(\alpha+3)} n^2.$$

$$\widehat{\tilde{L}}_n^{\alpha}(x) \tag{29}$$

Therefore

$$\sim \hat{L}_{n}^{\alpha}(x) + \frac{(\alpha+1)(\alpha+2)^{2}(\alpha+3)}{n^{2}|A|} \left(\tilde{A}_{n}n + B_{n} + \frac{C_{n}}{n} \tilde{A}'_{n}n + B'_{n} + \frac{C'_{n}}{n} \right) \begin{pmatrix} -\hat{L}_{n-1}^{\alpha+1}(x) \\ \frac{1}{n-1}\hat{L}_{n-2}^{\alpha+2}(x) \end{pmatrix}.$$

As a consequence, for $x \in \mathbb{C} \setminus [0, \infty)$

$$\frac{\widehat{\widetilde{L}}_n^{\alpha}(x)}{\widehat{L}_n^{\alpha}(x)}$$

$$\sim 1 + \frac{(\alpha+1)(\alpha+2)^{2}(\alpha+3)}{n^{2}|A|} \left(\widetilde{A}_{n}n + B_{n} + \frac{C_{n}}{n} \widetilde{A}'_{n}n + B'_{n} + \frac{C'_{n}}{n} \right) \begin{pmatrix} -\frac{\widehat{L}_{n-1}^{\alpha+1}(x)}{\widehat{L}_{n}^{\alpha}(x)} \\ \frac{1}{n-1} \frac{\widehat{L}_{n-2}^{\alpha+2}(x)}{\widehat{L}_{n}^{\alpha}(x)} \end{pmatrix}$$

$$= 1 + \frac{(\alpha+1)(\alpha+2)^{2}(\alpha+3)}{|A|} \left(\frac{\widetilde{A}_{n}}{n} + \frac{B_{n}}{n^{2}} + \frac{C_{n}}{n^{3}} \frac{\widetilde{A}'_{n}}{n} + \frac{B'_{n}}{n^{2}} + \frac{C'_{n}}{n^{3}} \right) \begin{pmatrix} -\frac{\widehat{L}_{n-1}^{\alpha+1}(x)}{\widehat{L}_{n}^{\alpha}(x)} \\ \frac{1}{n-1} \frac{\widehat{L}_{n-2}^{\alpha+2}(x)}{\widehat{L}_{n}^{\alpha}(x)} \end{pmatrix},$$

and taking into account

$$\lim_{n \to \infty} \frac{n^{(l-j)/2} \widehat{L}_{n+k}^{\alpha+j}(x)}{\widehat{L}_{n+k}^{\alpha+l}(x)} = (-x)^{-(j-l)/2},$$
(30)

uniformly on compact subsets of $\mathbb{C}\setminus[0,\infty)$, where $j,l\in\mathbb{R},\,h,k\in\mathbb{Z}$, (see [3]) then

$$\frac{\widetilde{L}_{n}^{\alpha}(x)}{L_{n}^{\alpha}(x)} = 1 + \mathcal{O}\left(\frac{1}{\sqrt{n}}\right),\,$$

uniformly on compact subsets of $\mathbb{C}\setminus[0,\infty)$.

On the other hand, if |A| = 0, $M_1 > 0$, from (27) and (28)

$$\widehat{\widetilde{L}}_{n}^{\alpha}(x)$$

$$= \widehat{L}_{n}^{\alpha}(x) + \frac{1}{\frac{1}{(K_{n-1}(0,0))^{2}} + \frac{1}{(K_{n-1}(0,0))} \left(\frac{M_{1}}{(\alpha+1)(\alpha+3)}n^{2} + Rn + T\right)} \times \left(\widetilde{A}_{n}n + B_{n} + \frac{C_{n}}{n}\widetilde{A}'_{n}n + B'_{n} + \frac{C'_{n}}{n}\right) \begin{pmatrix} -\widehat{L}_{n-1}^{\alpha+1}(x) \\ \frac{1}{n-1}\widehat{L}_{n-2}^{\alpha+2}(x) \end{pmatrix}.$$

thus, for $x \in \mathbb{C} \setminus [0, \infty)$

$$\frac{\widehat{\widehat{L}}_{n}^{\alpha}(x)}{\widehat{L}_{n}^{\alpha}(x)} \sim 1 + \frac{(\alpha+1)(\alpha+3)K_{n-1}(0,0)}{M_{1}} \left(\frac{\widetilde{A}_{n}}{n} + \frac{B_{n}}{n^{2}} + \frac{C_{n}}{n^{3}} \frac{\widetilde{A}'_{n}}{n} + \frac{B'_{n}}{n^{2}} + \frac{C'_{n}}{n^{3}} \right) \begin{pmatrix} -\frac{\widehat{L}_{n-1}^{\alpha+1}(x)}{\widehat{L}_{n}^{\alpha}(x)} \\ \frac{1}{n-1} \frac{\widehat{L}_{n-2}^{\alpha+2}(x)}{\widehat{L}_{n}^{\alpha}(x)} \end{pmatrix}.$$

Taking into account

$$\lim_{n \to \infty} K_{n-1}(0,0) \tilde{A}_n = \frac{M_1}{\alpha + 1}$$

$$\lim_{n \to \infty} K_{n-1}(0,0) \tilde{A}'_n = \frac{M_1}{\alpha + 1}$$

$$\lim_{n \to \infty} K_{n-1}(0,0) B_n = -2\lambda - \frac{M_1}{\alpha + 1}$$

$$\lim_{n \to \infty} K_{n-1}(0,0) B'_n = -\lambda - \frac{M}{\alpha + 1}$$

$$\lim_{n \to \infty} K_{n-1}(0,0) C_n = L_1$$

$$\lim_{n \to \infty} K_{n-1}(0,0) C'_n = L_2,$$

where L_1, L_2 are constants that do not depend of n, we obtain

$$\frac{\widehat{\widetilde{L}}_{n}^{\alpha}(x)}{\widehat{L}_{n}^{\alpha}(x)} = 1 + \mathcal{O}\left(\frac{1}{\sqrt{n}}\right),\,$$

uniformly on compact subsets of $\mathbb{C}\setminus[0,\infty)$. Thus

Theorem 3

$$\lim_{n \to \infty} \frac{\tilde{L}_n^{\alpha}(x)}{L_n^{\alpha}(x)} = 1 \tag{31}$$

uniformly on compact subsets of $\mathbb{C}\setminus[0,\infty)$.

We will find the corresponding Mehler-Heine formula for the Laguerre-Sobolev type orthogonal polynomials $\tilde{L}_n^{\alpha}(x)$. As above, in the first case, we will assume that |A| > 0. From (29) we get

$$\frac{\widehat{\widehat{L}}_{n}^{\alpha}(x/n)}{n^{\alpha}} + \frac{(\alpha+1)(\alpha+2)^{2}(\alpha+3)}{n^{\alpha+2}|A|} \left(\widetilde{A}_{n}n + B_{n} + \frac{C_{n}}{n} \widetilde{A}'_{n}n + B'_{n} + \frac{C'_{n}}{n} \right) \begin{pmatrix} -\widehat{L}_{n-1}^{\alpha+1}(x/n) \\ \frac{1}{n-1}\widehat{L}_{n-2}^{\alpha+2}(x/n) \end{pmatrix} \\
= \frac{\widehat{L}_{n}^{\alpha}(x/n)}{n^{\alpha}} + \frac{(\alpha+1)(\alpha+2)^{2}(\alpha+3)}{|A|} \left(\widetilde{A}_{n} + \frac{B_{n}}{n} + \frac{C_{n}}{n^{2}} \widetilde{A}'_{n} + \frac{B'_{n}}{n} + \frac{C'_{n}}{n^{2}} \right) \begin{pmatrix} -\frac{\widehat{L}_{n-1}^{\alpha+1}(x/n)}{n^{\alpha+1}} \\ \frac{n}{n-1} \frac{\widehat{L}_{n-2}^{\alpha+2}(x/n)}{n^{\alpha+2}}, \end{pmatrix}$$

thus,

$$\lim_{n \to \infty} \frac{\widetilde{L}_n^{\alpha}(x/n)}{n^{\alpha}} = x^{-\alpha/2} J_{\alpha}(2\sqrt{x}) + \frac{(\alpha+1)(\alpha+2)^2(\alpha+3)}{|A|} \left(\frac{\frac{2|A|}{(\alpha+1)(\alpha+2)(\alpha+3)}}{|A|} \frac{\frac{|A|}{(\alpha+1)(\alpha+2)}}{(\alpha+1)(\alpha+2)} \right) \begin{pmatrix} x^{-(\alpha+1)/2} J_{\alpha+1}(2\sqrt{x}) \\ x^{-(\alpha+2)/2} J_{\alpha+2}(2\sqrt{x}) \end{pmatrix},$$

uniformly on compact subsets of \mathbb{C} . As a consequence, the second part of the previous expression is

$$x^{-\alpha/2} \left(J_{\alpha}(2\sqrt{x}) - 2(\alpha+2)x^{-1/2}J_{\alpha+1}(2\sqrt{x}) + (\alpha+2)(\alpha+3)J_{\alpha+2}(2\sqrt{x}) \right).$$

But, taking into account that

$$J_{\alpha}(2\sqrt{x}) + J_{\alpha+2}(2\sqrt{x}) = \frac{\alpha+1}{\sqrt{x}}J_{\alpha+1}(2\sqrt{x}),$$

then

$$x^{-\alpha/2} \left[J_{\alpha}(2\sqrt{x}) - 2(\alpha + 2)x^{-1/2}J_{\alpha+1}(2\sqrt{x}) + (\alpha + 2)(\alpha + 3)J_{\alpha+2}(2\sqrt{x}) \right]$$

$$= x^{-\alpha/2} \left[-\frac{(\alpha + 3)}{\sqrt{x}}J_{\alpha+1}(2\sqrt{x}) + \left(\frac{(\alpha + 2)(\alpha + 3)}{x} - 1\right)J_{\alpha+2}(2\sqrt{x}) \right]$$

$$= x^{-\alpha/2} \left[-\frac{(\alpha + 3)}{\sqrt{x}} \left(\frac{\alpha + 2}{\sqrt{x}}J_{\alpha+2}(2\sqrt{x}) - J_{\alpha+3}(2\sqrt{x})\right) + \left(\frac{(\alpha + 2)(\alpha + 3)}{x} - 1\right)J_{\alpha+2}(2\sqrt{x}) \right]$$

$$= x^{-\alpha/2} \left[\frac{(\alpha + 3)}{\sqrt{x}}J_{\alpha+3}(2\sqrt{x}) - J_{\alpha+2}(2\sqrt{x}) \right]$$

$$= x^{-\alpha/2}J_{\alpha+4}(2\sqrt{x}).$$

Thus we get

Theorem 4 Let $\{\widehat{\tilde{L}}_n^{\alpha}\}_{n\geq 0}$ be the sequence of polynomials orthogonal with respect to (19) and |A|>0. Then

$$\lim_{n \to \infty} \frac{\widehat{L}_n^{\alpha}(x/n)}{n^{\alpha}} = x^{-\alpha/2} J_{\alpha+4}(2\sqrt{x}), \tag{32}$$

uniformly on compact subsets of \mathbb{C} .

Notice that the previous result coincides with [13] in the diagonal case, $M_0, M_1 > 0$.

Next, we will find the Mehler-Heine formula when $|A| = 0, M_1 > 0$. From (26),

$$\frac{\widehat{\widetilde{L}}_{n}^{\alpha}(x/n)}{n^{\alpha}}$$

$$= \frac{\hat{L}_{n}^{\alpha}(x/n)}{n^{\alpha}} + \frac{1}{\frac{1}{(K_{n-1}(0,0))^{2}} + \frac{1}{(K_{n-1}(0,0))} \left(\frac{M_{1}}{(\alpha+1)(\alpha+3)}n^{2} + Rn + T\right)} \times \left(\tilde{A}_{n}n + B_{n} + \frac{C_{n}}{n}\tilde{A}'_{n}n + B'_{n} + \frac{C'_{n}}{n}\right) \left(\frac{-n\frac{\hat{L}_{n-1}^{\alpha+1}(x/n)}{n^{\alpha+1}}}{\frac{1}{n^{\alpha}}\frac{\hat{L}_{n-2}^{\alpha+2}(x/n)}{n^{\alpha+2}}\right)$$

$$= \frac{\hat{L}_{n}^{\alpha}(x/n)}{n^{\alpha}} + \frac{1}{\frac{1}{(K_{n-1}(0,0))^{2}} + \frac{1}{(K_{n-1}(0,0))} \left(\frac{M_{1}}{(\alpha+1)(\alpha+3)}n^{2} + Rn + T\right)} \times \left(-\tilde{A}_{n}n^{2} - B_{n}n - C_{n}\frac{n}{n-1}\left(\tilde{A}'_{n}n^{2} + B'_{n}n + C'_{n}\right)\right) \left(\frac{-n\frac{\hat{L}_{n-1}^{\alpha+1}(x/n)}{n^{\alpha+1}}}{\frac{\hat{L}_{n-2}^{\alpha+2}(x/n)}{n^{\alpha+2}}}\right)$$

$$\to x^{-\alpha/2}J_{\alpha}(2\sqrt{x}) + \left(-(\alpha+3)\alpha+3\right) \left(\frac{x^{-(\alpha+1)/2}J_{\alpha+1}(2\sqrt{x})}{x^{-(\alpha+2)/2}J_{\alpha+2}(2\sqrt{x})}\right)$$

uniformly on compact subsets of \mathbb{C} . Then we get

Theorem 5 Let $\{\widehat{\widetilde{L}}_n^{\alpha}\}_{n\geq 0}$ be the sequence of polynomials orthogonal with respect to (19) and assume $|A|=0, M_1>0$. Then

$$\lim_{n \to \infty} \frac{\widehat{L}_n^{\alpha}(x/n)}{n^{\alpha}} = x^{-\alpha/2} \left(J_{\alpha}(2\sqrt{x}) - \frac{\alpha+3}{\sqrt{x}} J_{\alpha+1} \left(2\sqrt{x} \right) + \frac{\alpha+3}{x} J_{\alpha+2} \left(2\sqrt{x} \right) \right),$$

uniformly on compact subsets of \mathbb{C} .

Notice that the previous result coincides with [3] and [8], where the case $M_0 = 0$ and $\lambda = 0$ is studied.

In order to find a scaled strong asymptotic formula, we will write the Laguerre-Sobolev type orthogonal polynomials $\tilde{L}_{n}^{\alpha}(x)$ as a combination of the Laguerre monic orthogonal polynomials $L_{n}^{\alpha+2}(x), L_{n-1}^{\alpha+2}(x)$, and $L_{n-2}^{\alpha+2}(x)$. Replacing (12) and (13) in (20)

$$\begin{split} \widetilde{L}_{n}^{\alpha}(x) &= L_{n}^{\alpha}(x) - \left(\widetilde{\mathbb{L}}_{n}^{\alpha}(0)\right)^{t} A \begin{pmatrix} K_{n-1}(x,0) \\ K_{n-1}^{(0,1)}(x,0) \end{pmatrix} \\ &= L_{n}^{\alpha}(x) - \left(\widetilde{\mathbb{L}}_{n}^{\alpha}(0)\right)^{t} A \begin{pmatrix} \frac{(-1)^{n-1}}{(n-1)!\Gamma(\alpha+1)} L_{n-1}^{\alpha+1}(x) \\ \frac{(-1)^{n}}{(n-2)!\Gamma(\alpha+2)} L_{n-1}^{\alpha+2}(x) + \frac{(-1)^{n}n}{(n-2)!\Gamma(\alpha+2)} L_{n-2}^{\alpha+2}(x) \end{pmatrix} \\ &= L_{n}^{\alpha}(x) - \frac{(-1)^{n}}{(n-2)!\Gamma(\alpha+1)} \left(\widetilde{\mathbb{L}}_{n}^{\alpha}(0)\right)^{t} A \begin{pmatrix} -\frac{1}{n-1} L_{n-1}^{\alpha+1}(x) \\ \frac{1}{(\alpha+1)} L_{n-1}^{\alpha+2}(x) + \frac{n}{\alpha+1} L_{n-2}^{\alpha+2}(x) \end{pmatrix}. \end{split}$$

From (7) we get

$$\begin{split} \widetilde{L}_{n}^{\alpha}(x) &= L_{n}^{\alpha}(x) - \frac{(-1)^{n}}{(n-2)!\Gamma(\alpha+1)} \left(\widetilde{\mathbb{L}}_{n}^{\alpha}(0) \right)^{t} A \begin{pmatrix} -\frac{1}{n-1} \left(L_{n-1}^{\alpha+2}(x) + (n-1) L_{n-2}^{\alpha+2}(x) \right) \\ \frac{1}{(\alpha+1)} L_{n-1}^{\alpha+2}(x) + \frac{n}{\alpha+1} L_{n-2}^{\alpha+2}(x) \end{pmatrix} \\ &= L_{n}^{\alpha}(x) - \frac{(-1)^{n}}{(n-2)!\Gamma(\alpha+1)} \left(\widetilde{\mathbb{L}}_{n}^{\alpha}(0) \right)^{t} A \left[\begin{pmatrix} -\frac{1}{n-1} \\ \frac{1}{(\alpha+1)} \end{pmatrix} L_{n-1}^{\alpha+2}(x) + \begin{pmatrix} -1 \\ \frac{n}{\alpha+1} \end{pmatrix} L_{n-2}^{\alpha+2}(x) \right], \end{split}$$

where

$$\left(\widetilde{\mathbb{L}}_{n}^{\alpha}(0)\right)^{t} = \left(I + A\mathbb{K}_{n-1}(0,0)\right)^{-1} \left(\mathbb{L}_{n}^{\alpha}(0)\right)^{t}.$$

But from (7)

$$L_n^{\alpha}(x) = L_n^{\alpha+2}(x) + 2nL_{n-1}^{\alpha+2}(x) + n(n-1)L_{n-2}^{\alpha+2}(x).$$

As a consequence, we have the following

Theorem 6 For every $n \in \mathbb{N}$

$$\widetilde{L}_{n}^{\alpha}(x) = L_{n}^{\alpha+2}(x) + A_{n,\alpha}L_{n-1}^{\alpha+2}(x) + B_{n,\alpha}L_{n-2}^{\alpha+2}(x)$$
(33)

where

$$A_{n,\alpha} = 2n - \frac{(-1)^n}{(n-2)!\Gamma(\alpha+1)} \left(\widetilde{\mathbb{L}}_n^{\alpha}(0) \right)^t A \begin{pmatrix} -\frac{1}{n-1} \\ \frac{1}{(\alpha+1)} \end{pmatrix} \sim 2n - (\alpha+1)(\alpha+2)$$

$$B_{n,\alpha} = n(n-1) - \frac{(-1)^n}{(n-2)!\Gamma(\alpha+1)} \left(\widetilde{\mathbb{L}}_n^{\alpha}(0) \right)^t A \begin{pmatrix} -1 \\ \frac{n}{\alpha+1} \end{pmatrix} \sim n(n-1) - (\alpha+1)(\alpha+2)(n-1).$$

This means that the sequence $\{\tilde{L}_n^{\alpha}\}_{n\geq 0}$ is quasi-orthogonal with respect to the Laguerre weight $d\mu_{\alpha+2}=x^{\alpha+2}e^{-x}dx$. See [5] for more information about quasi-orthogonal families, in particular, the analysis of the zero distribution.

Introducing the change of variable nx in (33), we get

$$\widehat{\widetilde{L}}_{n}^{\alpha}(nx) = \widehat{L}_{n}^{\alpha+2}(nx) - \frac{A_{n,\alpha}}{n}\widehat{L}_{n-1}^{\alpha+2}(nx) + \frac{B_{n,\alpha}}{n(n-1)}\widehat{L}_{n-2}^{\alpha+2}(nx).$$

From the definition of $A_{n,\alpha}$ and $B_{n,\alpha}$,

$$\frac{A_{n,\alpha}}{n} = 2 - \frac{(\alpha+1)(\alpha+2)}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$
$$\frac{B_{n,\alpha}}{n(n-1)} = 1 - \frac{(\alpha+1)(\alpha+2)}{n} + \mathcal{O}\left(\frac{1}{n^2}\right).$$

Therefore

$$\begin{split} \widehat{\tilde{L}}_{n}^{\alpha}(nx) &= \widehat{L}_{n}^{\alpha+2}(nx) - 2\widehat{L}_{n-1}^{\alpha+2}(nx) + \widehat{L}_{n-2}^{\alpha+2}(nx) \\ &+ \frac{(\alpha+1)(\alpha+2)}{n} \widehat{L}_{n-1}^{\alpha+2}(nx) - \frac{(\alpha+1)(\alpha+2)}{n} \widehat{L}_{n-2}^{\alpha+2}(nx) + \\ &- \widehat{L}_{n-1}^{\alpha+2}(nx) \mathcal{O}\left(\frac{1}{n^{2}}\right) + \widehat{L}_{n-2}^{\alpha+2}(nx) \mathcal{O}\left(\frac{1}{n^{2}}\right). \end{split}$$

From (7) we get that $\widehat{L}_n^{\alpha}(x) = \widehat{L}_n^{\alpha+2}(x) - 2\widehat{L}_{n-1}^{\alpha+2}(x) + \widehat{L}_{n-2}^{\alpha+2}(x)$, thus

$$\frac{\widehat{\widetilde{L}}_n^\alpha(nx)}{\widehat{L}_n^\alpha(nx)} = 1 + \frac{(\alpha+1)(\alpha+2)}{n} \frac{\widehat{L}_{n-1}^{\alpha+2}(nx)}{\widehat{L}_n^\alpha(nx)} - \frac{(\alpha+1)(\alpha+2)}{n} \frac{\widehat{L}_{n-2}^{\alpha+2}(nx)}{\widehat{L}_n^\alpha(nx)} +$$

$$-\frac{\widehat{L}_{n-1}^{\alpha+2}(nx)}{\widehat{L}_{n}^{\alpha}(nx)}\mathcal{O}\left(\frac{1}{n^{2}}\right) + \frac{\widehat{L}_{n-2}^{\alpha+2}(nx)}{\widehat{L}_{n}^{\alpha}(nx)}\mathcal{O}\left(\frac{1}{n^{2}}\right). \tag{34}$$

We want to find the limit when n tends to ∞ in the left hand side of the previous identity. Using that (see [3] and [16])

$$\lim_{n \to \infty} \frac{\widehat{L}_{n-1}^{\alpha}(nx)}{\widehat{L}_{n}^{\alpha}(nx)} = -\frac{1}{\varphi\left((x-2)/2\right)}$$
(35)

uniformly on compact subsets of $\mathbb{C}\setminus[0,4]$, where φ is the mapping of $\mathbb{C}\setminus[-1,1]$ onto the exterior of the unit circle given by

$$\varphi(x) = x + \sqrt{x^2 - 1},$$

R.Alvarez-Nodarse and J. J. Moreno-Balcázar proved in [3] that

$$\lim_{n \to \infty} \frac{\widehat{L}_n^{\alpha}(nx)}{\widehat{L}_{n-1}^{\alpha+2}(nx)} = -\frac{(\varphi((x-2)/2)+1)^2}{\varphi(x-2)/2}.$$
 (36)

Then, using (35) and (36) we conclude that

$$\lim_{n \to \infty} \frac{\widehat{L}_{n-2}^{\alpha+2}(nx)}{\widehat{L}_{n}^{\alpha}(nx)} = \lim_{n \to \infty} \frac{\widehat{L}_{n-2}^{\alpha+2}(nx)}{\widehat{L}_{n-1}^{\alpha+2}(nx)} \frac{\widehat{L}_{n-1}^{\alpha+2}(nx)}{\widehat{L}_{n}^{\alpha}(nx)}$$

$$= \left(-\frac{1}{\varphi((x-2)/2)}\right) \left(-\frac{\varphi((x-2)/2)}{(\varphi((x-2)/2)+1)^2}\right)$$

$$= \frac{1}{(\varphi((x-2)/2)+1)^2}$$

uniformly on compact subsets of $\mathbb{C}\setminus[0,4]$. As a conclusion, from (34) we get the relative asymptotics for the scaled Laguerre-Sobolev-type orthogonal polynomials

Proposition 6 For $n \in \mathbb{N}$,

$$\lim_{n \to \infty} \frac{\widehat{\widetilde{L}}_n^{\alpha}(nx)}{\widehat{L}_n^{\alpha}(nx)} = \lim_{n \to \infty} \frac{\widetilde{L}_n^{\alpha}(nx)}{L_n^{\alpha}(nx)} = 1$$
 (37)

uniformly on compact subsets of $\mathbb{C}\setminus[0,4]$.

On the other hand, using (19) we get

$$\|\widetilde{L}_{n}^{\alpha}\|_{S}^{2} = \|L_{n}^{\alpha}\|_{\alpha}^{2} + \mathbb{L}^{\alpha}(0)^{t}(I + A\mathbb{K}_{n-1}(0,0))^{-1}A\mathbb{L}^{\alpha}(0).$$

If B is a nonsingular matrix, it is straightforward to prove that

$$\begin{vmatrix} 0 & u^t \\ v & B \end{vmatrix} = -|B| u^t B^{-1} v$$

where

$$B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \ u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \ v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}.$$

Thus

$$\begin{split} \left\| \widetilde{L}_{n}^{\alpha} \right\|_{S}^{2} &= \left\| L_{n}^{\alpha} \right\|_{\alpha}^{2} - \frac{1}{\left| I + A \mathbb{K}_{n-1}(0,0) \right|} \begin{vmatrix} 0 & \mathbb{L}_{n}^{\alpha}(0)^{t} \\ A \mathbb{L}_{n}^{\alpha}(0) & I + A \mathbb{K}_{n-1}(0,0) \end{vmatrix} \\ &= \frac{\left\| L_{n}^{\alpha} \right\|_{\alpha}^{2}}{\left| I + A \mathbb{K}_{n-1}(0,0) \right|} \left(\left| I + A \mathbb{K}_{n-1}(0,0) \right| + \begin{vmatrix} 0 & \mathbb{L}_{n}^{\alpha}(0)^{t} / \left\| L_{n}^{\alpha} \right\|_{\alpha}^{2} \\ -A \mathbb{L}_{n}^{\alpha}(0) & I + A \mathbb{K}_{n-1}(0,0) \end{vmatrix} \right) \\ &= \frac{\left\| L_{n}^{\alpha} \right\|_{\alpha}^{2}}{\left| I + A \mathbb{K}_{n-1}(0,0) \right|} \begin{vmatrix} 1 & \mathbb{L}_{n}^{\alpha}(0)^{t} / \left\| L_{n}^{\alpha} \right\|_{\alpha}^{2} \\ -A \mathbb{L}_{n}^{\alpha}(0) & I + A \mathbb{K}_{n-1}(0,0) \end{vmatrix}. \end{split}$$

Finally, using the fact that

$$I + A\mathbb{K}_n(0,0) = I + A\mathbb{K}_{n-1}(0,0) + \frac{A}{\|L_n^{\alpha}\|_{\alpha}^2} \mathbb{L}_n^{\alpha}(0) \mathbb{L}_n^{\alpha}(0)^t,$$

then

$$\frac{\left\|\widetilde{L}_{n}^{\alpha}\right\|_{S}^{2}}{\left\|L_{n}^{\alpha}\right\|_{\alpha}^{2}} = \frac{\left|I + A\mathbb{K}_{n}(0,0)\right|}{\left|I + A\mathbb{K}_{n-1}(0,0)\right|}.$$
(38)

Therefore using (38), (23), and (24) we get

Proposition 7 Let $\{\widetilde{L}_n^{\alpha}\}_{n\geq 0}$ be the sequence of polynomials orthogonal with respect to (19). Then

$$\lim_{n \to \infty} \frac{\left\| \widetilde{L}_n^{\alpha} \right\|_S^2}{\left\| L_n^{\alpha} \right\|_{\alpha}^2} = 1.$$

Acknowledgements.

The work of the first and second author have been supported by Comunidad de Madrid-Universidad Carlos III de Madrid, grant CCG07-UC3M/ESP-3339. The work of the second author has been supported by Dirección General de Investigación, Ministerio de Educación y Ciencia of Spain, grant MTM2006-13000-C03-02.

References

- [1] M. Alfaro, F. Marcellán, M. L. Rezola, and A. Ronveaux, Sobolev-Type orthogonal polynomials: The nondiagonal case, J. Approx. Theory 83 (1995), 266–287.
- [2] M. Alfaro, J. J. Moreno-Balcázar, A. Peña, and M. L. Rezola, Asymptotics for a generalization of Hermite polynomials, Submitted.
- [3] R. Alvarez- Nodarse and J. J. Moreno-Balcázar, Asymptotic properties of generalized Laguerre orthogonal polynomials, Indag. Math. (N.S) 15 (2004), 151–165.
- [4] G. E. Andrews, R. Askey, and R. Roy, *Special Functions*, Enciclopedia of Mathematics and its Applications Vol **71**, Cambridge University Press, Cambridge (1999).

- [5] C. Brezinski, K. Driver, and M. Redivo-Zaglia, Quasi-orthogonality with applications to some families of classical orthogonal polynomials, Appl. Numer. Math. 48 (2004), 157–168.
- [6] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, (1978).
- [7] H. Dueñas and F. Marcellán, Laguerre-Type orthogonal polynomials. Electrostatic interpretation, Int. J. Pure and Appl. Math. 38 (2007), 345–358.
- [8] H. Dueñas and F. Marcellán, The Laguerre-Sobolev-Type orthogonal polynomials: Holonomic equation and electrostatic interpretation, Rocky Mount. J. Math. (2008). In press.
- [9] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in one variable, Encyclopedia of Mathematics and its Applications Vol 98, Cambridge University Press, Cambridge (2005).
- [10] R. Koekoek, Generalizations of Laguerre Polynomials, J. Math. Anal. Appl. 153 (1990), 576–590.
- [11] R. Koekoek and H. G. Meijer, A generalization of Laguerre Polynomials, SIAM J. Math. Anal. 24 (1993), 768–782.
- [12] F. Marcellán, A. Branquinho, and J. C. Petronilho, *Classical Orthogonal Polynomials: A Functional Approach*, Acta Appl. Math. **34** (1994), 283–303.
- [13] F. Marcellán and J. J. Moreno-Balcázar, Asymptotics and Zeros of Sobolev Orthogonal Polynomials on Unbounded Supports, Acta Appl. Math. 94 (2006), 163–192.
- [14] F. Marcellán and A. Ronveaux, On a class of polynomials orthogonal with respect to a discrete Sobolev inner product, Indag. Math (N.S.) 1 (1990), 451–464.
- [15] H. G. Meijer, Zero distribution of orthogonal polynomials in a certain discrete discrete Sobolev space, J. Math. Anal. Appl. 172 (1993), 520-532.
- [16] G. Szegő, $Orthogonal\ Polynomials,\ 4^{th}\ ed.,\ Amer.\ Math.\ Soc.\ Colloq.\ Publ.\ Series,\ vol\ 23,\ Amer.\ Math.\ Soc.,\ Providence,\ RI,\ (1975).$