Asymptotic behaviour of the
Laguerre-Sobolev-Type Orthogonal
Polynomials. A nondiagonal case.

Herbert Duefias'?, Francisco Marcellan !

U Departamento de Matemdticas, Universidad Carlos III de Madrid, Avenida de la
Universidad 30, 28911, Leganés, Spain.

2 Universidad Nacional de Colombia, Departamento de Matemdticas
Ciudad Universitaria, Bogotd, Colombia

To professor Adhemar Bultheel with occasion of his 60" birthday

Abstract

In this paper we study the asymptotic behaviour of polynomials orthogonal with
respect to a Sobolev-Type inner product
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where p and g are polynomials with real coefficients,
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and A is a positive semidefinite matrix.

We will focus our attention on their outer relative asymptotics with respect to the
standard Laguerre polynomials as well as on an analog of the Mehler-Heine formula
for the rescaled polynomials.

Key words: Quasi-orthogonal polynomials, Laguerre Polynomials, Sobolev type
inner products, outer relative asymptotics, Bessel functions, Mehler-Heine formula.
2000 AMS classification: 42C05, 33C47.

Email addresses: haduenasr@unal.edu.co (Herbert Duenas)
pacomarc@ing.uc3m.es (Francisco Marcellan).

Preprint submitted to Elsevier 23 February 2009



1 Introduction.

Orthogonal polynomials with respect to a Sobolev-Type inner product

(p.0) = [ p(@)a@)dn(z) + P()' AQ(e), 1)

where du is a nontrivial probability measure supported on the real line, A €
R®*F) is a positive semidefinite matrix, p, ¢ are polynomials with real coeffi-

cients, and Q(c) = (q(c), q(c),... ,q(k_l)(c)>t have been introduced in [1].

When A = diag (Mo, M, ..., My_1), the so-called diagonal Sobolev-Type
case, many researchers were interested in the analytic properties of the poly-
nomials orthogonal respect with (1). In particular, R. Koekoek [10] studied
the second order linear differential equation satisfied by such orthogonal poly-
nomials when du = z%e *dz, o > —1, and ¢ = 0. They also satisfy a higher
order recurrence relation as well as they can be represented as hypergeometric
functions.

Later on, when k = 2 and My, M; > 0, in [11] the authors focus the attention
in the location of the zeros of such orthogonal polynomials that are called
Laguerre-Sobolev Type orthogonal polynomials. Finally, the analysis of their
asymptotic properties was done in [3] as well in [13].

On the other hand, when k£ > 2 if dy = 2% *dz, ¢ = 0, and My = M; =
coo = Mp_9 =0, Mp_1 > 0 then the same analog problems were studied in
[15] in the framework of the zero distribution. From an algebraic point of view
and for more general measures, in [14] the authors deal with representations of
Sobolev-Type orthogonal polynomials in terms of the polynomials orthogonal
with respect to the measure p assuming the same constraints for the inner
product (1) as above.

The first situation of a non-diagonal Sobolev type inner product like (1) was
considered in [2]. Here the authors deal with the measure du = e * dx sup-
ported on R, ¢ = 0, and k = 2. In particular, they analyze scaled asymptotics
for the corresponding orthogonal polynomials (Mehler-Heine formulas) and,
as a consequence, the asymptotic behaviour of their zeros follows.

Taking into account that generalized Hermite polynomials appear as a con-
sequence of the symmetrization process for Laguerre orthogonal polynomi-
als ([4],[6], and [16]) it seems to be very natural to analyze polynomial se-
quences orthogonal with respect to the inner product (1) when du = z%e~*dz,
A € R®* s a nondiagonal positive semi-definite matrix with & > 2, and
c=0.



In this contribution we focus our attention in the case k = 2. Thus we general-
ize some previous results from the diagonal case (see [3], [8], and [11]) as well
as we give a nice interpretation of some results of [2| using a symmetrization
process for our Laguerre-Sobolev type orthogonal polynomials.

The structure of the manuscript is the following. In section 2 we present the
basic background about the properties of classical Laguerre polynomials which
will be needed along the paper. Section 3 deals with the asymptotic properties
of the Laguerre-Sobolev type polynomials, orthogonal with respect to the inner
product

(0.0) = [ p()a(x)a®e "dz + B0 AQ(0), o > 1,

where A = Mo A is a positive semidefinite matrix and we denote Q(0) =
A M,

(¢(0),¢'(0))". We obtain the outer relative asymptotics of these polynomials

in terms of Laguerre polynomials and a Mehler-Heine type formula as well

as the behaviour of the Sobolev norm of the monic Laguerre-Sobolev type

orthogonal polynomials.

2 Preliminaries.

Let {fin},5o be a sequence of real numbers and let 1 be the linear functional
defined in the linear space P of the polynomials with real coefficients, such
that

</’L7xn>:/’l/n7 n:071727“'

i is said to be a moment functional associated with {IU’TZ}nZO' Furthermore
[ 18 the n — th moment of the functional .

Given a moment functional y, a sequence of polynomials {F,}, -, is said to
be a sequence of orthogonal polynomials with respect to p if

(1) The degree of P, is n.
(17) (g, Ppo(x)Pp(z)) = 0, m # n.
(i17) {u, P*(x)) #0,n=0,1,2, ...

If every polynomial P,(z) has 1 as leading coefficient, then {F,}, ., is said
to be a sequence of monic orthogonal polynomials.

The next theorem, whose proof appears in 6] , gives necessary and sufficient



conditions for the existence of a sequence of monic orthogonal polynomials
{P.},>¢ With respect to a moment functional p associated with {/,}, -

Theorem 1 ([6]) Let p be the moment functional associated with {fi,}, -
There exists a sequence of monic orthogonal polynomials {P,}, <, associated
with 1 if and only if the leading principal submatrices of the Hankel matriz
[MHJ'LJEN are non singular.

A moment functional such that there exists the correspondient sequence of
orthogonal polynomials is said to be regular or quasi-definite (|6]).

The proof of the next proposition can be founded in [4], [6], [9], [12], and [16].

Proposition 1 (The Christoffel-Darboux formula). Let {P”}nZO be a sequence
of monic orthogonal polynomials. If we denote the n-th kernel polynomial by

then, for every n € N,

L Pea@Paly) = Pa(e) P (y)

Kn ; -
(9) = 7 P2 P

(2)

Using the following notation for the partial derivatives of the kernel K, (z,y)

I (Kn(z,y))
DI xdky

= K9P(z,y),

we present some properties about these derivatives. Let {P,}, -, be a sequence
of monic orthogonal polynomials. From the Christoffel-Darboux Formula (2)
, we have

1 Pn(l')Pnfl(y) — Pnfl(x)Pn(y)
<,u7 P3_1> r—=Yy
The computation of the j — th partial derivative with respect to y yields

Kn—l(xa y) =

Using the Leibnitz rule



& (P &4 PPy
oyi \z—vy) =k (x—y)i k1

and replacing the last expression in (3), we get

09) (- L s d! PPy asedl P
Kn—l( ’y>_ < ,P3_1> (Pn( )kz:% k! (ZL' _ y)j—k+1 Pn*l( )kz:%) k! (ZIZ‘ . y)],
_ !
T P (e — gyt
(Pn@:) S LR W) - ) - Pa(@) Y L PO - w) .
k=0 """ k=0 """

As a consequence,
Proposition 2 ([1/, [1}]) For every n € N,

KO (,0) = — —1 (Pa(@)Q; (2, 0; Paca) = Poa(2)Q5(2, 0 P)) (4)

<M7 P,,%,1>

where Q;(z,0; P,_1) and Q;(z,0; P,) denote the Taylor Polynomials of degree
7 of the polynomials P,_1 and P, around x = 0, respectively.

The Laguerre orthogonal polynomials are defined as the polynomials orthog-
onal with respect to the inner product

(p,q) :/o pgzte "dx, a> 1, p,q € P. (5)

We will summarize some properties of the Laguerre monic orthogonal polyno-
mials that we will use in the sequel. The details of the proof of Proposition 3
and the Theorem 2, can be founded in [4], [6], [9], [12], and [16].

Proposition 3 Let {Ly}, -, be the sequence of Laguerre monic orthogonal
polynomials.

(1) For every n € N,
wly(x) = Ly (2) + 2n+ 14 a) Ly(z) + n(n+a) Ly (z),  (6)

with L§(z) = 1, L{(z) = 2— (a+ 1).



(2) For every n € N,

Ly(z) = Ly (2) + nLyty (2). (7)
(3) For every n € N,
IL2)12 = nIT(n + o + 1). (8)
(4) For everyn € N
Fn+a+1)
LE(0) = (—1)n T )
(0 = () )
(5) For everyn € N
(Ly) () = nLy (). (10)
(6) For every n € N,
x(L%(z)) = nl(x) +n(n+a) LY (v). (11)
In particular, for Laguerre polynomials we get
Proposition 4 For every n € N
Ly 1(0)Ly*i(2)
K i(z,0) = —n=l , 12
1@.0) = = i n + o) (12)
—1)" —1)"
KT(L_JI)<$,0) — ( ) La+2($) + ( ) n La+2(x)’ (13)

(n—2)!I0(a+2) " (n—2)T(a+2) "2

gy DM =1 o (=1)"n a+3
B T i R S e i

The proof of (12) is given in [7]. For (13) see [8]. Finally, (14) is a consequence
of (13) and (7).

Using (8) and (9) in (12), (13), and (14) we obtain
Proposition 5 For every n € N,

Fn+a-+1)
(n—DT(a+ 1) (a+2)’

K, 1(0,0) = (15)

Fn+a+1) n—1
700 _ _
w1 (0,0) (n—2)TNa+ 1)I'(a+3) a+2

K,-1(0,0), (16)

Fn+a+1)(nla+2)—(a+1) (nla+2)—(a+1))(n—1)

K1V(0,0) =

(n—2)IT (a4 2)I'(a + 4)  (a+ D) (a+2)(a+3)
(17)

K,_1(0,0).



Theorem 2 (The Mehler-Heine type formula) Let J, be the Bessel function
defined by

& a2
Jol) = Jz::g TG +a+1)’
then R .
i La@/(49)) _ 22, (2V/7) (18)

n—00 n<

uniformly on compact subsets C and uniformly in j € NU{0}. Here E%(m) =
(=1)"/n!L5(x).

3 Asymptotic behaviour

If p is a polynomial with real coefficients, then we will denote

Let p and ¢ be polynomials with real coefficients. We define the following
Sobolev type inner product

.a)s = [ p@)a()a"e " de + PO AQ(O), o > -1, (19)
where
My A
A=7" 7
A M,

My M; > 0, A is a positive semidefinite matrix, i.e det A = |A| > 0. Notice
that if My = 0, M; > 0 or M; = 0, My > 0 it implies that A = 0. These
situations have been considered in some previous papers by the authors (see
[7] and [8]), as well as in [3| and [8].

From (19), (p,q)g is an inner product in the linear space P of polynomials
with real coefficients in the sense that

(1) (\p+pg,r) =X{p,r)g+uigr), for p,g,r € Pand A\, pu € R.
(2) (p,q)s = (¢, p)g for p,q € P
(3) (p,p)g >0, for every p € P\{0}.



Let {Eﬁ} - be the sequence of monic polynomials orthogonal with respect

0 (19). Consider the Fourier expansion of L% in terms of the sequence of
Laguerre monic orthogonal polynomials {L5}, -,

n—1
Ly(z) = Ly(z) + Y anpLi(2),
k=0

where B
(L3 (x), Lg(x))
I3

Up j; = 2 0<k<n-—1.

From (19), we get
~ t
(La(0)) ALg(0)
Izl

Qpk = —

As a consequence,

w1 (L2 (0))" ALg(0)

L) = L) = X e

- L) - (E300) 4y HEOEL)

e I 17 N
. =0 o =~ t Kn_l(iE,O)
Li(x) = Ly(x) - (L5(0)) A (K 00, 0)) . (20)
From the above expression we obtain
~ ~ ¢ K1 (0,
L200) = L3(0) — (L3(0)) 4 ( - a(0) ) ,
K,>7(0,0)
, , [ K8MY0,0)
o =(L¢ — (LY A :
(Z2) (0)=(z2) (0) - (L2(0)) " 11)(070))
Thus
(L2(0))" = 2(0))" = (L°(0))" AK,1(0,0), (21)
where



As a consequence, from (21)

(L(0)" (1 + AK,1(0,0)) = (L7(0))'

where [ is the 2 X 2 identity matrix. Notice that

I+ AK,_1(0,0) =

0 1 n—1 (n(a+2)—(a+1))(n—1)

[ 1 0 1 _n=1
Kn71<07 O) Kpn—1(0,0) + A a+2
)

i K,_1(0,0 T at2  (af1)(at2)(a+3)
G H
=K,-1(0,0) ;

J K
where
1 A nA
e M —
“ Kn_1(0,0)+< 0+a+2> a+2
o (M (200 + 3)A .
(a+1)(a+3) a+2 (a+1)(a+2)(a+3)

M, A
<a+2 * (a+2)(a+3)>
M, M,
S L (AJr a+2)
Min? A (20 + 3) M,
@t )@+3) <a+2 (a+1)(a+2)(a+3)> *

K=

A M, 1
<a+2 i (a+ 2)(a+3)> * K,—1(0,0)

On the other hand

I+ AK,_1(0)] =

(22)

)



1 1
+
(K,-1(0,0))*  K,—1(0,0

1 _n=1
A a+2
_n—=1 (n(a+2)—(a+1))(n—1)

a+2 (a+1)(a+2)(a+3)

(K-1(0,0))?

(A s )

) (3 MR B )
s (M e~ o) (00

=L+ Kt (0,0) (Ml <n(?a++2i>?a(i;mn3>_ 2 - 0423 pn =D+ MO) +

o, qn—1 n 1
(K1 (0,00)"14] ((a+1)(a+2)(a+3) - (a+2)(a+3)>'

Thus, if |A] > 0 we get

|A| n2a+4

I+ AK,_1(0,0)| ~ : 23
| OO~ D+ 22 1 3) (23)
and, if |A| =0, M; > 0,
a+3M
11 + AK,_(0,0)] ~ — 1 (24)

(a+1)(a+3)

As a consequence, from (20) and (22)

L) =

(_1)7171(04-5-1) 0 La—l—l T
Lg(x) — (L3(0))" (I + AK,_1(0)) " A | (71T . i)
(=1 (=1) Lafg(az)

(n—=2)IT'(a+2) (n—2)IT'(a+2)
t -1
n nIT'(nta+1)
=L%(z) — (=1) (=" e GHY
n (n — 2)‘F(a + Q)Kn_l(o, 0) (_1)71—1 nl'(n+a+1) J K

T'(a+1)
—2t 0 Lot ()
1 1)\ LeF3(2)

thus



Lg(x)+(1) (GH) A((a—l—l) 0 )(Lﬁ}(x))
) J K n—1 n-—1 L2t ()

Furthermore, if we denote

we get

where

1
M| =——<1I+ AK,,_1(0,0)]|.
| | (Kn_1(070))2 | 1( )|

Therefore, from (25), after some computations we get

Ly(x) = (26)

n—1

ZLﬁ(ﬂf)ﬂLm <Ann2+Bnn+Cn A’nn2+B;Ln+O;L) :

Lyt3(x)
with
i 24| N M,
(a+1)(a+2)(a+3) (a+1)K,_1(0,0)

"Tla+D)(a+2)(a+3) K,1(0,0) (a+1)K,1(0,0)
Al |A| + Ml

" (a+1)(a+2)  (a+1)K,_1(0,0)

;L a A A M,

" o (a+1)(a+2) K,1(0,0) (a+1)K, 1(0,0)’
and C,, and C/, depend of My, M, A, and a.

Let

11



n!
Lo =" ),

then, from (26)

Ly (x) = (27)

M] A Lat(a)

Ly ! A, n? A" 12 / / _%f’?f—ri(ﬁ)

~ ]_ ~ _ ) _Z\/gtl T
:Lf{(x)‘F(Ann+Bn_|_CnA/n_|_B/+Cn) Al() '
n—1 n—2<x)

On the other hand, since
| M| = (28)

1 1 M, 9
mzmamf+uq4mm>ﬁa+wm+a”**“+T>

n2

+*“<m+¢xa+m%a+a

where R, T, R, and T’'depend only of My, M, \, and «; and, assuming that
|A| > 0, we get

—|—R’n—|—T/>,

Al 5
M| ~ .
[M] (@t D(a+22(ar3)
Therefore o
L,(x) (29)
-~ 1 2)2 _ _ / _Egi—l x
NLa(x)+(a+ J(@+2)(a +3) (A n+ B —I—O”A’n%—B’—l-C”) N 1(@) :
2 n?[4 ST AT I L fars
n—1 n72(x)

As a consequence, for z € C\[0, 00)




Lot (@)

(a+D(a+2?2*(a+3) /- i / T
~1+ 2 [A| (Ann+Bn+CnA;1n+B;+Cnn> ingm
n=l La(x)
2 L3t (=)
:1+(a+1)(a+2) (a—|—3)<gn B, c A, B c) " Ta)
|A| n n2 nd n n2 n3 LL;*_’%(:E) ’
n=l La(x)

and taking into account

o P )

e Lot ()

= (=) 070, (30)

uniformly on compact subsets of C\[0,00), where j,l € R, h, k € Z, (see [3])
then

f10()

uniformly on compact subsets of C\[0, 00).

On the other hand, if |A| =0, M; > 0, from (27) and (28)

=~
L,(x)
Za( )+ 1 y
- X
n 1 1 v 5
(Kn-1(0,0))® + (Kn-1(0,0)) ((a+1)(1a+3)n + Rn + T)
i T [ L)
(Am+ Bt & Amy B+ G )| 0
1 ln ()
thus, for z € C\[0, 00)
L, Lyt ()
Lu(r) (@4 1)(0+3)K,1(0,0) (; LBy Gy Ay By c) T Iaw
Li(x) M, no T2 T e T2 Ty )| Lot

n—1 TLa(z)

Taking into account

13




: ~ M
rLlLHc}o Kn—l(()? O)An = o +11

- M,
lim K,_1(0,0)A" =
Jim Koo1(0,0)4, = ———

My
lim K, 1(0,0)B, = —2\ —
Aixg, K1 (0,0) ot
M
lim K, 1(0,0)B. = X\ —
nto0 1(0,0)B, a+1
nh_}ngo anl(O;O)Cn:Ll

Jim K,1(0,0)C;, = Lo,

where L1, L, are constants that do not depend of n, we obtain

~

iy 7058

uniformly on compact subsets of C\[0,c0). Thus

Theorem 3 ~
L (z)
% L)

uniformly on compact subsets of C\[0,00).

=1 (31)

We will find the corresponding Mehler-Heine formula for the Laguerre-Sobolev
type orthogonal polynomials LS (x). As above, in the first case, we will assume
that |A| > 0. From (29) we get

~Qx

L,(z/n)
noé
Le(x/n a+Dla+2%(a+3) /- - ,
~Latw/n) | (et 10 ; ) { )<Ann+Bn+CnA’n+B’+C”)
ne nat ’A‘ n n n n

ngn a+D(a+2)%*(a+3 ~ ~ y y
D) s Dt 20D (e g mg)

—Ly*i(x/n)

L L3 (x/n)

n Lpt3(z/n)

n—1

thus,
za
lim Ly(x/n) =272 ], (2Vx)+
n—00 n<
(a+1)(a+2)*(a+3) ( 21| Al ) @2 L (2V)
|A| (a+1)(a+2)(a+3) (a+1)(a+2) )

m—(a+2)/2Ja+2(2\/E>

14



uniformly on compact subsets of C. As a consequence, the second part of the
previous expression is

17 (Ja(2V) = 2(0 + 22 a1 (2V7) + (0 + 2)(a + 3)Jay2(2V/7))

But, taking into account that

a—+1

\/— Ot+1<2\/_)

(2\/_) + Ja+2(2\/_)

then
= [Ju(2VE) — 20+ 205 ar (2VE) + (o + 2)(0 4 3)Jaa(2V)
_Ifa/Z_ (a+3) (a+2)(a+3) -
R N B (e e Pt vE]
_ o) __(oz+3) a+2
ot ( STRVER a+3<2f>>
((a + Q)x(a +3) 1) Ja+2(2\/5)‘|
e [““ sV~ a2 >]
:Jf_a/2<]a+4(2\/5).
Thus we get

~x

Theorem 4 Let {Ln} be the sequence of polynomials orthogonal with re-
n>0
spect to (19) and |A| > 0. Then

~x

Jim Lf/n) = 27 Jaya(2V/7), (32)

uniformly on compact subsets of C.

Notice that the previous result coincides with [13] in the diagonal case, My, M; >
0.

Next, we will find the Mehler-Heine formula when |A| = 0, M; > 0. From (26),

L, (x/n)

/n/CM

15



_ La/m) |

X
" (Kn— 1(0 0))2 + (Kn-1(0,0)) ((a+1)(a+3 n2+ Rn + T)
Lot (x/n)
A A / —N—a T
(Ann + Bn + % Aﬁmn + sz + % ) n La+2¥x/n)
m no+2
L2 (z/n 1
: n;a/)Jr 1 + 1 ( e n+Rn+T)X
(Kn_1(0,0)% T Kn_1(0,0)) \(a+1)(a+3)
Lot+1(x/n)
A - no T at1l
(_Aan — Ban =G 71 <A n’ T B/ n Cl) ) La+2(x/+n)

na+2

x_(a+1)/2<]a+1 (2\/5)

— 2 2], (2V7x) + <—(a +3) a+ 3)
l,f(oﬂr2)/2joé+2 (2\/5)

uniformly on compact subsets of C. Then we get

Theorem 5 Let {Zn} be the sequence of polynomials orthogonal with re-
n>0
spect to (19) and assume |A| =0, My > 0. Then

i £ e (o) - 20 (o) 4 e (2v))

uniformly on compact subsets of C.

Notice that the previous result coincides with |3] and |8], where the case My =
0 and A = 0 is studied.

In order to find a scaled strong asymptotic formula, we will write the Laguerre-
Sobolev type orthogonal polynomials Zg(m) as a combination of the Laguerre
monic orthogonal polynomials L2+%(z), L¢3 (x), and L¢T3(z). Replacing (12)
and (13) in (20)

(Gl Dl a+l
=L3(2) — (L3(0)) 4 et L ()

n n &LOH-Q(:L,)_‘_LLOH—Q( )
(n=2)IT'(a+2) (n—2)T(at2)

—Lafl(x)

(a+1)lﬁf+%< ) a+1llg+g( )

16



From (7) we get

Lilo) = L3o) — gyra s (L0 4

— L (Lo (@) + (n = 1) LT3 (x)) )

oy Lali(@) + JH LA (@)

(a+1) a+l17n—2

(a+1) a+1

—L30) ~ g7y (E4(0)' A () L) + ( - ) Lﬁ(@] ,

where
(L2(0))" = (I + AK,1(0,0)) ™" (L3(0))"-
But from (7)

LS (x) = L3™(x) + 2nL33(2) + nln — 1) L33 (@),

n—1

As a consequence, we have the following
Theorem 6 For every n € N

53(96) = L?f“ (x) + An,asz% (35) + Bn,aL%H—_g (1‘) (33)

where

Apo=2n— (=1 D (iﬁ(o))tA (”1 ) ~2n—(a+1)(a+2)

) ~nn—1)—(a+1)(a+2)(n—1).

This means that the sequence {Eg} - is quasi-orthogonal with respect to
n

the Laguerre weight djiqo = 2%+t2e~%dz. See |5] for more information about
quasi-orthogonal families, in particular, the analysis of the zero distribution.

Introducing the change of variable nz in (33), we get

~a A , B

L,(nx) = Ly (nz) — =Lyt (nz) + ——"*<Ly%5(na).
n

1)
From the definition of A, , and B,, ,,

17



AWZQ_ (a+1)(a+2) +O<12>
n n n
B, o (a+1)(a+2) <1>
It S— .
n(n —1) n +0 n?
Therefore

~x

L, (nx) =Ly (nz) — 2LeT} (nx) + LoH5 (na)
(a+1)(a+2)

+1)(a+2) - -
At DO 2 gy DO D pa) 4
Ta 1 Ta 1
— L2 (nz)O (712) + L2 (nx)O (2> .

From (7) we get that L2(z) = Lo+2(z) — 202*2(2) + Lo*2(2), thus

Ezn (nx) 14 (a+1)(a+2) f)i{ff(nw) _(a+D(a+2) ng%(nx)
Ly (nz) n Ly (nz) n Ly (nz)
L2 (nz) /1N L 2(nz) . /1
a E%(nx) © (712) * E%(nx) © (n2) (34)

We want to find the limit when n tends to oo in the left hand side of the
previous identity. Using that (see [3] and [16])

Le 1
T L (3)
n—oo [a(ng) o ((x—2)/2)
uniformly on compact subsets of C\[0, 4], where ¢ is the mapping of C\[—1, 1]
onto the exterior of the unit circle given by

p(x) =+ Va? -1,

R.Alvarez-Nodarse and J. J. Moreno-Balcézar proved in [3] that

) (ol =2)/2)+ 17
Jim, Lo (nz) o(r—2)/2 ' (36)

Then, using (35) and (36) we conclude that

18



- Lgtg(m;) _ {z%f%(nx) th%(m)
n—oo [o(pg) - nToo L%ff(nx) L& (nx)
1

- (‘m—mm) (_(@(9(0;@2_)2)/ i) 1>2>

1
ez —2)/2) + 1)
uniformly on compact subsets of C\[0,4]. As a conclusion, from (34) we get

the relative asymptotics for the scaled Laguerre-Sobolev-type orthogonal poly-
nomials

Proposition 6 Forn € N,

o Lana) - La()
n—00 L%(?”LIB) n—00 L%(?’Ll’)

=1 (37)
uniformly on compact subsets of C\[0, 4].
On the other hand, using (19) we get
~ 2
|Zall, = IZ2 12 +1L2(0) (1 + AK,1(0,0)) 7 AL®(0).
If B is a nonsingular matrix, it is straightforward to prove that

0 ut

= —|B|u'B™ "
v B

where

ab U v

B = , U= ' , U= '

cd Ug Vg
Thus

1 0 Lz (0)*

= 2 . an? .
HLan— 125l [T+ AK,—1(0,0)[ | ALe(0) T + AK,,_1(0,0)

1L 0 Le(o)y/|Le?

" T + AK,,_,(0,0)]

(I+AKn1(0,o)| +

e L L)Y Izl
T+ AKa (0, 0)] | — AL (0) 1+ AK,-41(0,0)

19
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Finally, using the fact that
A «@ @ t
1 + AKn(O, 0) =1 + AKn_l(O, 0) + W n(O)Ln<O) y
then

|Zas 17+ aK,0,0)
ILe)? |1 + AK,—1(0,0)]

(38)

Therefore using (38), (23), and (24) we get

Proposition 7 Let {Eﬁ} - be the sequence of polynomials orthogonal with
respect to (19). Then

L

= | el
nilo
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