Copyright 2017 - Site designed and maintained by: Ariel Díaz De Armas

PhD. Dissertation

  1. Problemas de perturbación de objetos espectrales discontinuos en haces matriciales, Universidad Carlos III de Madrid, Leganés, Dec 2007.


Selected Papers in JCR Journals

  • An explicit description of the irreducible components of the set of matrix pencils with bounded normal rank. F. De Terán, F. M. Dopico, and J. M. Landsberg. Linear Algebra Appl. 520 (2017) 80-103.
  • Uniqueness of solution of a generalized *-Sylvester matrix equation. F. De Terán and B. Iannazzo. Linear Algebra Appl., 493 (2016) 323-335.
  • Matrix polynomials with completely prescribed eigenstructure. F. De Terán, F. M. Dopico, and P. Van Dooren. SIAM J. Matrix Anal. App., 36 (2015) 302-328.
  • Spectral equivalence of matrix polynomials and the Index Sum Theorem. F. De Terán, F. M. Dopico, and D. S. Mackey. Linear Algebra Appl., 459 (2014) 264-333.
  • New bounds for roots of polynomials based on Fiedler companion matrices. F. De Terán, F. M. Dopico, and J. Pérez. Linear Algebra Appl., 451 (2014) 197-230.
  • Flanders' theorem for many matrices under commutativity assumptions. F. De Terán, R. Lippert, Y. Nakatsukasa, and V. Noferini. Linear Algebra Appl., 443 (2014) 120-138
  • Eigenvectors and minimal bases for some families of Fiedler-like linearizations. M. I. Bueno and F. De Terán. Lin. Multilin. Algebra 62 (2014) 39-62.
  • The solution of the equation AX+BX*=0, F. De Terán. Lin. Multilin. Algebra, 61 (2013) 1605-1628.
  • Condition numbers for inversion of Fiedler matrices, F. De Terán, F. M. Dopico, and J. Pérez. Linear Algebra Appl., 439 (2013) 944-981.
  • The solution of the equation AX+X*B=0, F. De Terán, F. M. Dopico, N. Guillery, D. Montealegre, and N. Z. Reyes. Linear Algebra Appl., 438 (2013) 2817-2860.
  • Fiedler companion linearizations for rectangular matrix polynomials, F. De Terán, F. M. Dopico, and D. S. Mackey. Linear Algebra Appl., 437 (2012) 957-991.
  • On the perturbation of singular analytic matrix functions: A generalization of Langer and Najman's results, F. De Terán. Oper. Matrices, 5 no. 4 (2011) 553-564.
  • Palindromic Companion Forms for Matrix Polynomials of Odd Degree, F. De Terán, F. M. Dopico, and D. S. Mackey. J. Comput. Appl. Math., 236 no. 6 (2011) 1464-1480.

Consistency and efficient solution of the Sylvester equation for *-congruence: AX + X^*B = C, F. De Terán and F. M. Dopico. Electron. J. Linear Algebra, 22 (2011) 849-863.


Preprints and Proceedings

  1. Canonical forms for congruence of matrices: a tribute to H. W. Turnbull and A. C. Aitken, F. De Terán, Actas del II Congreso de la Red Temática de Álgebra Lineal, Análisis Matricial y Aplicaciones (ALAMA), Valencia, 2nd-4th June, 2010.
  2. Linearizations of matrix polynomials: Sharp lower bounds for the dimension and structures, F. De Terán, F. M. Dopico and D. S. Mackey, Actas del XXI Congreso de ecuaciones diferenciales y aplicaciones (CEDYA) XI Congreso de matemática aplicada, Ciudad Real, 21-25 sept. 2009.

Who's Online

We have 28 guests and no members online