
An extension of the Geronimus transforma-
tion for orthogonal matrix polynomials on the
real line

Juan Carlos García-Ardila, Luis E. Garza and Francisco Marcellán

Abstract. We consider matrix polynomials orthogonal with respect to a sesquilin-
ear form ⟨·, ·⟩W such that

⟨P(t)W(t),Q(t)W(t)⟩W =
∫
I

P(t)dµQ(t)T , P,Q ∈ Pp×p[t],

where µ is a symmetric, positive definite matrix of measures supported in some
infinite subset I of the real line, and W(t) is a matrix polynomial of degree N.
We deduce the integral representation of such sesquilinear forms in such a way
a Sobolev type inner product appears. We obtain a connection formula between
the sequences of matrix polynomials orthogonal with respect to µ and ⟨·, ·⟩W , as
well as a relation between the corresponding block Jacobi and Hessenberg type
matrices.
Mathematics Subject Classification (2010). Primary 42C05; Secondary 15A23.
Keywords. Matrix orthogonal polynomials, Block Jacobi matrices, Matrix Ge-
ronimus transformation, Block Cholesky decomposition, Block LU decomposi-
tion, quasi-determinants.

1. Introduction
Matrix polynomials
Recall that if R is a ring, then a left module over R is a set M together with two
operations

+ : M × M → M and · : R × M → M
such that for m, n ∈ M and a, b ∈ R we have

i) (M.+) is an Abelian group.
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ii) (a + b) · m = a · m + b · m and a · (m + n) = a · m + a · n.
iii) (a · b) · m = a · (b · m).

In a similar way, one defines a right module on R. If M is a left and right module
over R, then M is said to be a bi-module [27, 30].
M is said to be a free left (or right) module over R if M admits a basis, that is,
there exists a subset S of M such that S is not empty, S generates M, (M =< S >=
span(S )) and S is linearly independent.

Let R (resp. C) be the set of real (resp. complex) numbers and denote by Rp×p

(resp. Cp×p) the ring of p × p matrices with real (resp. complex) entries. Recall
that for any matrices Ak ∈ Rp×p, 0 6 k 6 n, with det(An) , 0, the matrix P(t) =
Antn + An−1tn−1 + · · · + A1t + A0 is said to be a matrix polynomial of degree n. In
particular, if An = Ip, the identity p × p matrix, then the polynomial is said to be
monic. The set of matrix polynomials with coefficients in Rp×p will be denoted by
Rp×p[t]. t0 ∈ C is said to be a zero of P(t) if det [P(t0)] = 0. Clearly, from the above
definition, P(t) has at most np zeros.

Observe that Rp×p[t] is a free bi-module (and, in particular, a left module) on the
ring Rp×p with basis {Ip, tIp, t2Ip . . .}. Important submodules of Rp×p[t] are the sets
R

p×p
n [t] of matrix polynomials of degree less than or equal to n with the basis
{Ip, tIp, . . . tnIp} of cardinality n + 1. Since Rp×p

n [t] has an invariant basis number
[30], then any other basis has the same cardinality. If (rn(t))n∈N is a sequence of
monic matrix polynomials where each rn(t) has degree n, then < (rn(t))n∈N > is a
free left module over Rp×p with basis precisely (rn(t))n∈N. Notice that < (rn(t))n∈N >
is a submodule of Rp×p[t]. Furthermore, for each n ∈ {0, 1, 2, . . .} there exist ele-
ments bn,k ∈ Rp×p, k = 0, . . . , n − 1, such that

rn(t) = tnIp +

n−1∑
k=0

bn,ktk.

The above relation is equivalent to
r0(t)
r1(t)
r2(t)
...

 = L


Ip

tIp

t2Ip
...

 ,
where L is a semi-infinite lower matrix with 1’s in the main diagonal. Due to the
structure of the matrix L there exists a unique semi-infinite matrix L−1 such that
LL−1 = L−1L = Ip, where Ip = diag(Ip, Ip . . .) is the block semi-infinite identity
matrix [10]. The above implies that there exists an isomorphism between Rp×p[t]
and < (rn(t))n∈N >, and therefore Rp×p[t] = < (rn(t))n∈N > and (rn(t))n∈N is a basis
of Rp×p[t]. Using a similar procedure we get that Rp×p

n [t] = < (rk(t))n
k=0 > for every

n ∈ N.

Given a matrix polynomial P(t), we can define a polynomial operator P : Cp×p −→
Cp×p such that
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P(Z) = AnZn + An−1Zn−1 + · · · + A1Z + A0Ip, Z ∈ Cp×p, (1)
i.e. the evaluation of the polynomial P(t) at the matrix Z. It is worth noting the
importance of the order of the factors in (1) due to the non-commutativity of the
product of matrices. Given Ω ∈ Cp×p, it is easily verified that P(t) can be written as
P(t) = PΩ(t)(tIp − Ω), where PΩ(t) is a matrix polynomial of degree n − 1, if and
only if the operator P satisfies P(Ω) = 0p×p (the null p × p matrix).

Remark 1. The following notation will be used in the sequel. If B is the block semi-
infinite matrix

B =


B1,1 B1,2 B1,3 · · ·
B2,1 B2,2

B3,1
. . .

...

 ,
where Bi, j is a p × p matrix, and A is a p × p matrix, then the product A ~ B will be
understood as

A ~ B =


A

A
. . .



B1,1 B1,2 B1,3 · · ·
B2,1 B2,2

B3,1
. . .

...

 =

AB1,1 AB1,2 AB1,3 · · ·
AB2,1 AB2,2

AB3,1
. . .

...

 .
Similarly, B ~ A means

B ~ A =


B1,1A B1,2A B1,3A · · ·
B2,1A B2,2A

B3,1A
. . .

...

 .
In particular if B and C are block semi-infinite Hessenberg matrices with blocks
of size p × p, then B(A ~ C) = (B ~ A)C ([7] Proposition 2.3). Hereinafter we will
always work with semi-infinite Hessenberg matrices. If P(t) = tn+An−1tn−1+ · · ·+A0
is a matrix polynomial with Ai ∈ Rp×p and B is the above block semi-infinite matrix,
then we understand P(B) as

P(B) = Bn + An−1 ~ Bn−1 + · · · + A0 ~ Ip.

Definition 1. The block semi-infinite matrix

Λ =:



0p×p Ip 0p×p 0p×p · · ·

0p×p 0p×p Ip 0p×p
. . .

0p×p 0p×p 0p×p Ip
. . .

...
. . .

. . .
. . .

. . .
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is said to be the shift matrix.

Notice that if χ(t) = (Ip, tIp, t2Ip, . . .)T , then Λχ(t) = tχ(t). Moreover, if W(t)
is an N − th degree matrix polynomial W(t) =

∑N
k=0 cktk, with ck ∈ Rp×p, then

χ(t)W(t) = W(Λ)χ(t). Notice also that ΛΛT = Ip, but ΛTΛ = diag(0p×p, Ip . . .).

In the sequel, we will use quasi-determinants to obtain connection formulas between
some families of orthogonal polynomials. They constitute a generalization of the
determinants when the entries of the matrix belong to a non-commutative ring, and
share several properties with them. In the simplest case of a 2×2 block matrix there
are four quasi-determinants

∣∣∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣∣∣ = a1,1 − a1,2a−1
2,2a2,1,

∣∣∣∣∣∣a1,1 a1,2

a2,1 a2,2

∣∣∣∣∣∣ = a1,2 − a1,1a−1
2,1a2,2,∣∣∣∣∣∣a1,1 a1,2

a2,1 a2,2

∣∣∣∣∣∣ = a2,1 − a2,2a−1
1,2a1,1,

∣∣∣∣∣∣a1,1 a1,2
a2,1 a2,2

∣∣∣∣∣∣ = a2,2 − a2,1a−1
1,1a1,2.

Notice that on each case the quasi-determinant related to the boxed block is just the
Schur complement of the opposite block. We will also use quasi-determinants for
3 × 3 block matrices. In this case, the Sylvester’s theorem for quasi-determinants
gives∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣ a1,1 a1,3

a3,1 a3,3

∣∣∣∣∣∣−
∣∣∣∣∣∣ a1,2 a1,3

a3,2 a3,3

∣∣∣∣∣∣
∣∣∣∣∣∣ a2,2 a2,3

a3,2 a3,3

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣ a2,1 a2,3

a3,1 a3,3

∣∣∣∣∣∣ , (2)

when the right side expression makes sense. For more information on quasi-determinants,
we refer the reader to [21].

Spectral theory of matrix polynomials
One of the goals of this contribution is to get an explicit integral representation of
a symmetric sesquilinear that is defined in terms of some matrix polynomial. For
this purpose we need to introduce the concept of canonical Jordan chain. Let W(t)
be a monic matrix polynomial of degree N, let λ1, . . . , λq be their zeros and let
α1, . . . , αq be their corresponding multiplicities. Since W(t) is a monic polynomial,
we have

∑q
i=1 αi = N p. For a given λk, if there exists a nonzero vector v0,k such that

W(λk)v0,k = 0p,

then v0,k is said to be an eigenvector of W(t) associated with λk.

Definition 2. A sequence of vectors {v0,k, v1,k . . . , vmk−1,k} is said to be a Jordan
chain of length mk associated with λk if v0,k is an eigenvector of W(t) corresponding
to λk and

j∑
i=0

1
i!

W (i)(λk)v j−i,k = 0p, j = 0, . . . ,mk − 1.
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The maximal length of a Jordan chain corresponding with the zero λk is called the
multiplicity of the eigenvector v0,k and is denoted by m(v0,k). Hereafter we deal only
with Jordan chains of maximal length.

Definition 3. Given a basis {v[1]
0,k, v

[2]
0,k . . . , v

[dk]
0,k } of the linear subspace Ker(W(λk))

with dim(Ker(W(λk))) = dk, a canonical Jordan chain associated with the zero λk is
defined as a system of Jordan chains with maximal length

v[i]
0,k, v

[i]
1,k, · · · , v

[i]
mi−1,k, i = 1, . . . , dk.

If m(v[i]
0,k) = mk, then

m(λk,W(t)) =:
dk∑

i=1

mi

is said to be the Jordan multiplicity of λk.

The following proposition, which is a direct consequence of Lemma 12.5 of [28]
(see also [22]), will be the main tool in the sequel.

Proposition 2. For each zero λk of W(t) with multiplicity αk, there exists a canon-
ical maximal Jordan chain

v[i]
0,k, v

[i]
1,k, · · · , v

[i]
mi−1,k, i = 1, . . . dk,

such that m(λk,W(t)) = αk if and only if {v[1]
0,k, · · · , v

[dk]
0,k } is a basis of Ker(W(λk)).

Matrix orthogonal polynomials
Recall that a sesquilinear form ⟨·, ·⟩ from the bi-module Rp×p[t] to the ring of the
p × p matrices is a map

⟨·, ·⟩ : Rp×p[t] × Rp×p[t] −→ Rp×p

satisfying
i) ⟨AP(t) + BR(t),Q(t)⟩ = A ⟨P(t),Q(t)⟩ + B ⟨R(t),Q(t)⟩,

ii) ⟨P(t), AQ(t) + BR(t)⟩ = ⟨P(t),Q(t)⟩ AT + ⟨P(t),R(t)⟩ BT ,
for any matrices A, B ∈ Rp×p and any matrix polynomials P,Q,R ∈ Rp×p[t]. If ad-
ditionally ⟨P(t),Q(t)⟩ = ⟨Q(t), P(t)⟩T holds for every polynomials P,Q, then ⟨·, ·⟩ is
said to be a symmetric sesquilinear form.

Let M = (µi, j)
p−1
i, j=0 be a positive definite symmetric matrix of measures supported on

I ⊂ R, and let us introduce the following symmetric sesquilinear form

⟨P(t),Q(t)⟩L =
∫
I

P(t)dMQT (t), P(t),Q(t) ∈ Rp×p[t]. (3)

This is known in the literature (see [31, 32]) as a left inner product. Similarly, we
can define the right inner product by

⟨P(t),Q(t)⟩R =
∫
I

PT (t)dMQ(t).
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Since ⟨R,Q⟩L =
⟨
RT ,QT

⟩
R

for every R,Q ∈ Rp×p[t], in the sequel we only deal with
the left inner product.

A generalization of the Gram-Schmidt orthogonalization process for the canonical
basis (tnIp)n∈N of Rp×p[t] allows us to construct a sequence of matrix polynomials
(Pn(t))n∈N such that its leading coefficient is a nonsingular matrix and∫

I

Pn(t)dMPT
m(t) = δn,mS n, n,m > 0, deg(Pn(t)) = n,

where δn,m is the Kronecker delta and S n is a positive definite p× p matrix for every
n > 0. (Pn(t))n∈N is said to be a sequence of matrix orthogonal polynomials asso-
ciated with ⟨·, ·⟩L. Notice that we can always assume that (Pn(t))n∈N is a sequence
of monic matrix orthogonal polynomials. In this situation, it satisfies the three term
recurrence relation [12, 32].

tPn(t) = Pn+1(t) + BnPn(t) + AnPn−1(t), n ≥ 0, (4)
P−1(t) = 0p×p, P0(t) = Ip,

where An, Bn ∈ Rp×p are nonsingular and hermitian matrices, respectively. The
above relation can be written in matrix form as

tP = JmonP with Jmon =


B0 Ip

A1 B1 Ip

A2 B2 Ip
. . .

. . .
. . .

 ,
where P = [PT

0 (t), PT
1 (t) · · · ]T . Jmon is called the block Jacobi matrix associated with

the sequence (Pn(t))n∈N.

On the other hand, let us define the i, j matrix moment associated with ⟨·, ·⟩L with
respect to the basis (tnIp)n∈N by

mi, j =
⟨
tiIp, t jIp

⟩
L
=

∫
I

ti+ jdM, i, j ≥ 0.

The semi-infinite block matrix H = (mi, j)∞i, j=0 is called the block Hankel matrix
associated with ⟨·, ·⟩L. Notice that H can also be written as

H =
∫
I

χ(t)dMχ(t)T ,

where χ(t) = (Ip, tIp, t2Ip, . . .)T . Since M is a positive definite matrix of measures,
there exists a semi-infinite lower triangular block matrix T , with blocks Ip in its
diagonal, and a semi-infinite block diagonal matrix D = diag{S 0, S 1, . . .} such that
H = T−1DT−T . This is known as Cholesky block factorization (see [6]). As a con-
sequence, P = Tχ(t), and the orthogonality can also be expressed as∫

I

PdMPT = T
(∫
I

χ(x)dMχT (x)
)

T T = D.
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Remark 3. The sequence of monic matrix polynomials (Pn(t))n∈N can be expressed
in terms of the moments (mi, j)∞i, j=0 as follows. Let us consider the block matrix

Hn =


m0,0 · · · m0,n−1
... · · ·

...
mn−10, · · · mn−1,n−1

 .
If the block matrices Hn are nonsingular for every n ∈ N, then the sequence of
matrix polynomials (Pn(t))n∈N given by (see [29])

Pn(t) =: tnIp −
(
mn,0 · · · mn,n−1

)
H−1

n


Ip

tIp
...

tn−1Ip

 ,
is orthogonal with respect to ⟨·, ·⟩L. Furthermore, if (rn(t))n∈N is another ordered
basis of monic polynomials of the left module Rp×p[t], deg(rn(t)) = n, and Hr is the
matrix of moments associated with the new basis, i.e (Hr)i, j =: µi, j =

⟨
ri(t), r j(t)

⟩
L
,

then due to the uniqueness of (Pn(t))n∈N, we have

Pn(t) = rn(t) −
(
µn,0 µn,1 · · · µn,n−1

)
(Hr)−1

n


r0(t)
r1(t)
...

rn−1(t)

 . (5)

Given a sequence of matrix monic orthogonal polynomials (Pn(t))n∈N, with respect
to ⟨·, ·⟩L, we define the n-th Christoffel–Darboux kernel matrix polynomial

Kn(x, y) :=
n∑

k=0

(Pk(y))T S −1
k Pk(x).

In the same way as the matrix orthogonal polynomials, the kernel matrix polynomial
has a representation in terms of the moments associated with the basis (rn(t))n∈N as
follows

Kn(x, y) =
(
rT

0 (y) . . . rT
n (y)

)
(Hr)−1

n+1


r0(x)
...

rn(x)

 . (6)

Recall that since S n are positive definite matrices, and thus for each n ∈ N there
exists a unique positive definite matrix Kn such that S n = K2

n , i.e. Kn is the square
root of ⟨Pn(t), Pn(t)⟩L. The sequence of matrix polynomials (Qn(t))n∈N defined by
Qn(t) = K−1

n Pn(t) is called a sequence of orthonormal matrix polynomials with
respect to ⟨·, ·⟩L, since

⟨Qn(t),Qm(t)⟩L =
∫
I

QndMQT
m = δn,mIp, n,m > 0.

(Qn(t))n∈N satisfies the symmetric three term recurrence relation

tQn(t) = Cn+1Qn+1(t)+EnQn(t)+CT
n Qn−1(t), n ≥ 0, Q−1 = 0p×p, Q0 = Ip, (7)
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where the matrices Cn are nonsingular and En = ET
n . Notice that the sequence of

orthonormal matrix polynomials is not unique, since given a sequence of unitary
matrices (Un)n∈N, the sequence (UnQn(t))n∈N is also a sequence of orthonormal poly-
nomials. An analogue of the Favard’s theorem for matrix polynomials was proved
by A. I. Aptekarev and E. M. Nikishin in [5]. Indeed, they proved that if a sequence
of matrix polynomials (Qn(t))n∈N satisfies (7), then there exists a symmetric matrix
of measures M such that the sequence (Qn(t))n∈N is orthonormal with respect to M.

Given the symmetric sesquilinear form (3), the sequence of functions (Fn(t))n∈N
defined by

Fn(t) :=
∫

1
t − y

Pn(y)dM(y),

also satisfies the three term recurrence relation (4) but with different initial condi-
tions. In particular, when n = 0 the function

F(t) =: F0(t) =
∫

1
t − y

dM(y) (8)

is said to be the matrix Stieltjes function associated with the matrix of measures
M. In the scalar case, the Stieltjes function has been extensively studied (see [1, 9,
33]) due to its close relation with the measure (and therefore with their associated
orthogonal polynomials). In the matrix case there is an important result given by
Durán in [15] where the Markov theorem in the matrix case (see [1] for the scalar
case) is proved.
Notice that we can write the matrix Stieltjes function (8) as the formal series

F(t) =
∞∑

n=0

1
tn+1 mn,

where mn = mi, j if i + j = n.

There is an exhaustive literature concerning the theory of matrix orthogonal poly-
nomials that is focused on the extension of results which are known for the scalar
case (see for example [11, 15, 16, 19, 29, 31, 32]). Some unexpected results have
been obtained. For instance, the classification of sequencess of matrix orthogonal
polynomials (far away from the classical diagonal cases) satisfying second order
linear differential equations with polynomial coefficients which are independent of
the degree of the polynomial eigenfunctions, i.e. the so-called Bochner problem, is
still open (see [18]). There are also orthogonal families that do not satisfy a scalar-
type Rodrigues’ formula [17], or families satisfying a first order linear differential
equation [8], a fact that does not hold in the scalar case.

A problem of great interest in recent years is the bispectral problem and the gener-
ation of new solutions using the Darboux process [23, 24]. In particular, for matrix
polynomials satisfying the bispectral problem, new solutions can be generated us-
ing Christoffel and Geronimus transformations (see for example [25]). A first step
was given in [2], where the authors study a perturbation of matrix of measures con-
sisting in the multiplication by a matrix polynomial of an arbitrary degree such that
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its leading coefficient is a non-singular matrix (Matrix Christoffel Perturbation). In
a very recent work [3], the same authors study the matrix analogue of the scalar
Geronimus transformation as well as several extensions of them including left and
right multiplication by different matrix polynomials of matrices whose entries are
linear functionals on the linear space of of polynomials with complex coefficients.
In both [2] and [3], the representation of the new families of bi-orthogonal polyno-
mials with respect to the new perturbations are given in terms of quasi-determinants.

In this contribution, we focus our attention on symmetric Geronimus transforma-
tions for positive definite sesquilinear forms, extending some results obtained in the
scalar case (see [13, 14]). In particular, we are interested in the analysis of sesquilin-
ear forms ⟨·, ·⟩W such that

⟨PW,QW⟩W =
∫
I

PdMQT , (9)

where M is a positive definite matrix of measures and W(t) is a fixed matrix poly-
nomial of arbitrary degree. A first example of a matrix Geronimus transformation
was given in [13] (see also [20]), where the authors obtained a relation between a
(non-diagonal) Sobolev inner product and a matrix Geronimus transformation. The
above problem was studied in [3], as a composition of a Geronimus and Christof-
fel transformation (in this order), i.e. for a generalized function ux, its symmetric
Geronimus transformation ǔx is given by the transformations

ûx det(W(x))W(x)T = ux 7→ ǔx = adj(W(x))ûx.

We do not use this approach. Instead, we study the symmetric Geronimus transfor-
mation in a different way, which allow us to obtain other type of results.

The structure of the manuscript is as follows. In Section 2, we define a symmetric
sesquilinear form that represents a Geronimus transformation of a matrix of mea-
sures. Thus we get an inner product of Sobolev type in the linear space of matrix
polynomials. This is an inverse problem in the sense stated in [13] for the scalar
case. In Section 3 a connection formula for the corresponding sequences of matrix
orthogonal polynomials is obtained as well as a relation for the corresponding block
Jacobi matrices. Finally, assuming some conditions on the structure of the moment
matrix of the sesquilinear form, in Section 4 the relation between the corresponding
Stieltjes functions is deduced. In such a case we get a spectral linear transform in
the sense of [33].

2. A generalized Geronimus transformation for symmetric
matrix sesquilinear forms

Let W(t) be a matrix monic polynomial of degree N with N p zeros outside the inte-
rior of the convex hull of I, the support of the matrix of measures dM. Let BW be
the set BW := {tiWm : i = 0, . . . ,N − 1,m > 0}. Since deg(tiWm) = i + Nm, then BW
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is a basis for the left module Rp×p[t].

Now, we define a sesquilinear form ⟨ f , g⟩W on Rp×p[t] such that

⟨R(t)W(t),Q(t)W(t)⟩W =
∫
I

R(t)dMQ(t)T . (10)

Notice that ⟨·, ·⟩W is not completely defined by (10). Indeed, if µ̂k, j are the moments
associated with ⟨·, ·⟩W with respect to the basisBW , i.e. µ̂Nm+k,Nm′+k′ =

⟨
tkWm(t), tk′Wm′ (t)

⟩
W

,
then for 0 ≤ k, k′ ≤ N − 1, the moments µ̂k,Nm′+k′ and µ̂Nm+k,k′ (this is, the first N
rows and columns on the matrix of moments) can be chosen arbitrarily. However,
we require that µ̂Nm+k,k′=µ̂

T
k′,Nm+k in order that ⟨·, ·⟩W will be symmetric. If ⟨·, ·⟩W is

a non degenerate sesquilinear form and we denote by HB and ĤB the block moment
matrices associated with dM and ⟨·, ·⟩W , respectively, using this basis, then ĤB and
HB are related as follows

HB =


µ0,0 µ0,1 µ0,2 . . .
µ1,0 µ1,1 µ1,2 . . .
µ2,0 µ2,1 µ2,2
...

...
...
. . .

 , ĤB =


µ̂0,0 . . . µ̂0,N−1 . . .
...

. . .
...

µ̂N−1,0 . . . µ̂N−1,N−1 . . .
...

... HB

 .
On the other hand, the matrix of moments Ĥ associated with ⟨·, ·⟩W , computed
in terms of the canonical basis (tnIp)n∈N has a block Cholesky factorization Ĥ =
T̂−1D̂T̂−T with T̂ a lower triangular block matrix with Ip in its main diagonal and D̂
a block diagonal matrix. The block matrices H and Ĥ are related as follows

H = ⟨χ(t), χ(t)⟩L = ⟨χ(t)W(t), χ(t)W(t)⟩W = W(Λ) ⟨χ(t), χ(t)⟩W W(Λ)T = W(Λ)ĤW(Λ)T .

A condition for the existence of the sequence of monic matrix orthogonal polynomi-
als (P̂n(t))n∈N with respect to ⟨·, ·⟩W is that the matrices (ĤB)n must be nonsingular
for every n ∈ N. Indeed, if we consider the quasi-determinant

|(ĤB)N+n| =

∣∣∣∣∣∣∣∣ (ĤB)N En

ET
n (HB)n

∣∣∣∣∣∣∣∣ with En =


µ̂0,N · · · · · · µ̂0,N+n−1
...

...
µ̂N−1,N · · · · · · µ̂N−1,N+n−1

 ,
then using the determinant formula det((ĤB)N+n) = det((HB)N) det(|(ĤB)N+n|) we
conclude that the sequence of polynomials (P̂n(t))n∈N will exist if the matrices (ĤB)k,
k = 1, . . .N and |(ĤB)N+n|, n ∈ N are non singular. Observe that for n = N(l− 1)+ s,
with s = 0, . . .N − 1 and l > 1 we have

|(ĤB)N+n| =

∣∣∣∣∣∣∣∣∣∣∣
(ĤB)N An Bn

AT
n (HB)n−N Cn

BT
n CT

n Dn

∣∣∣∣∣∣∣∣∣∣∣ , (11)
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where

An =


µ̂0,N · · · µ̂0,n−1
...

...
µ̂N−1,N · · · µ̂N−1,n−1

 , Bn =


µ̂0,n · · · µ̂0,n+N−1
...

...
µ̂N−1,n · · · µ̂N−1,n+N−1

 ,

Cn =


µ0,n−N · · · µ0,n−1
...

...
µn−N−1,n−N · · · µ̂n−N−1,n−1

 , Dn =


µn−N,n−N · · · µn−N,n−1
...

...
µn−1,n−N · · · µ̂n−1,n−1

 .
With this in mind, we get the following proposition.

Proposition 4. For ℓ > 1 and 0 ≤ s ≤ N − 1,

|(ĤB)Nℓ+s| = (ĤB)N + Es(HB)−1
s ET

s (12)

−
ℓ−1∑
j=1

∣∣∣∣∣∣∣ BN j+s AN j+s

CN j+s (HB)N( j−1)+s

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ DN j+s CT

N j+s

CN j+s (HB)N( j−1)+s

∣∣∣∣∣∣∣
−1

∣∣∣∣∣∣∣∣
BN j+s CT

N j+s

AT
N j+s (HB)N( j−1)+s

∣∣∣∣∣∣∣∣ .
Moreover∣∣∣∣∣∣∣ Bn CT

n

AT
n (HB)n−N

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣ Bn An

Cn (HB)n−N

∣∣∣∣∣∣
T

=:


dn,0 · · · dn,n−1
...

...
dn+N−1,0 · · · dn+N−1,N−1

 ,
where

dm+N,k =
⟨
Pm(t)W(t) +

[⟨
rm(y),KT

m−1(t, y) − KT
n−N−1(t, y)

⟩
L

]
W(t), rk(t)

⟩
W
,

for n − N ≤ m ≤ n − 1, 0 ≤ k ≤ N − 1, and∣∣∣∣∣∣ Dn CT
n

Cn (HB)n−N

∣∣∣∣∣∣ =:


hn−N,n−N · · · hn−N,n−1
...

...
hn−1,n−N · · · hn−1,n−1

 ,
where

hm,k =
⟨
Pm(t) +

[⟨
rm(y),KT

m−1(t, y) − KT
n−N−1(t, y)

⟩
L

]
, rk(t)

⟩
L
,

for n − N ≤ m, k ≤ n − 1.

Proof. Let n ≥ N. From (11) and properties of the quasi-determinant [21]

|(ĤB)N+n| =

∣∣∣∣∣∣∣∣∣∣
(ĤB)N Bn An

BT
n Dn CT

n
AT

n Cn (HB)n−N

∣∣∣∣∣∣∣∣∣∣ .
Since Bn and Dn are square matrices, then using Sylvester’s theorem (see (2)), we
get

|(ĤB)N+n| =

|(ĤB)n| −
∣∣∣∣∣∣ Bn An

Cn (HB)n−N

∣∣∣∣∣∣
∣∣∣∣∣∣ Dn CT

n

Cn (HB)n−N

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣ Bn CT

n

AT
n (HB)n−N

∣∣∣∣∣∣ .
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Thus, (12) follows in a recursive way. On the other hand, for n − N ≤ m ≤ n − 1
and 0 ≤ k ≤ n − 1,

dm+N,k = µ̂m+N,k −
(
µm,0, · · · , µm,n−N−1

)
[(HB)n−N]−1


µ̂N,k
...
µ̂n−1,k


and using (5) and (6) we get

µ̂m+N,k =
⟨[

Pm(t) +
⟨
rm(y),KT

m−1(t, y)
⟩

L

]
W(t), rk(t)

⟩
W
,

(
µm,0, · · · , µm,n−N−1

)
[(HB)n−N]−1


µ̂N,k
...
µ̂n−1,k

 = ⟨[⟨
rm(y),KT

m−1(t, y) − KT
n−N−1(t, y)

⟩
L

]
W(t), rk(t)

⟩
W
.

In the same way, for n − N ≤ m, k ≤ n − 1,

hm,k = µm,k −
(
µm,0, · · · , µm,n−N−1

)
[(HB)n−N]−1


µ0,k
...

µn−N−1,k

 ,
and thus we get the result. �

Recall that since BW is a basis of left module Rp×p[t], every matrix polynomial f (t)
of degree n = sN + j can be written as

f (t) =
N−1∑
l=0

s∑
m=0

al,mtlWm(t), (13)

where al,m = 0p×p if m = s and l > j. Let λk be a zero of W(t) with multiplicity
αk, k = 1, · · · , q. If {v[1]

0,k . . . , v
[dk]
0,k } is a basis for Ker(W(λk)) with dimension dk, then

from Proposition 2 there exists a canonical Jordan chain

v[i]
0,k, v

[i]
1,k, · · · , v

[i]
mi−1,k i = 1, . . . , dk,

such that
∑dk

i=1 mi = αk. For each i = 1, . . . , dk, we define the following root vector
polynomials

vk,i(t) =
mi−1∑
r=0

(t − λk)rv[i]
r,k.

Definition 4. Let λk be a zero of W(t) and let vi,k(t), 0 ≤ i ≤ dk, be its associated
root vector polynomial defined as above. For r ∈ N, we define the matrix linear
operator J(r)

k,i (·) : Rp×p[t] −→ Cp as follows

J(r)
k,i ( f (t)) :=

1
r!

(
f (t)vk,i(t)

)(r)
∣∣∣∣∣
t=λk

=

r∑
j=0

1
j!

f ( j)(λk)v[i]
r− j,k.
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From Definition 2 and Proposition 2, we get

J(r)
k,i (W(t)) = 0p, r = 0 . . . ,mi − 1,

and thus, using the representation (13), we obtain

J(0)
k,1 ( f (t)) = a0,0J(0)

k,1 (1)+ · · · +aN−1,0J(0)
k,1

(
tN−1

)
,

...
...

...

J(m1−1)
k,1 ( f (t)) = a0,0J(m1−1)

k,1 (1)+ · · · +aN−1,0J(m1−1)
k,1

(
tN−1

)
,

...
...

...

J(0)
k,dk

( f (t)) = a0,0J(0)
k,dk

(1)+ · · · +aN−1,0J(0)
k,dk

(
tN−1

)
,

...
...

...

J
(mdk−1)
k,1 ( f (t)) = a0,0J

(mdk−1)
k,dk

(1)+ · · · +aN−1,0J
(mdk−1)
k,dk

(
tN−1

)
.

As a consequence, if we define

Jk( f (t)) =
(
J(0)

k,1( f (t)) · · · J(m1−1)
k,1 ( f (t)) · · · J(0)

k,dk
( f (t)) · · · J

(mdk−1)
k,dk

( f (t))
)

p×αk
,

then for each k = 1, · · · , q, we get

Jk ( f (t)) =
(
a0,0 · · · aN−1,0

) 
J(0)

k,1(1) · · · J
(mdk−1)
k,dk

(1)
... · · ·

...

J(0)
k,1(tN−1) · · · J

(mdk−1)
k,dk

(tN−1)


=

(
a0,0 · · · aN−1,0

) 
Jk(1)
...

Jk(tN−1)


N p×αk

.

With this in mind, we can write

(
J1 ( f (t)) · · · Jq ( f (t))

)
=

(
a0,0 · · · aN−1,0

)
T, where T =


J1(1) · · · Jq(1)
...

...
J1(tN−1) · · · Jq(tN−1)

 .
Since T is a nonsingular matrix (see [22], Theorem 1.20.), then(

J1 ( f (t)) · · · Jq ( f (t))
)
T−1 =

(
a0,0 · · · aN−1,0

)
.

On the other hand, let f [1](t) be the matrix polynomial defined by

f [1](t) =

 f (t) −
N−1∑
l=0

al,0tl

 W−1(t).

Similarly, we define recursively the following sequence of matrix polynomials ( f [i](t))s
i=2

f [i](t) =

 f [i−1](t) −
N−1∑
l=0

al,i−1tl

 W−1(t) =
s∑

m=i

N−1∑
l=0

al,mtlWm−i(t).
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Proceeding as above, for the sequence of matrix polynomials ( f [i](t))s
i=1 we get

(
J0

(
f [i](t)

)
· · · Jq

(
f [i](t)

))
p×N p
T−1 =

(
a0,i a1,i · · · aN−1,i

)
p×N p
. (14)

We are now ready to obtain an explicit representation for ⟨·, ·⟩W .

Proposition 5. Let dM̂ be a positive definite matrix of measures such that W(t)dM̂W(t)T =

dM. Let f =
∑N−1

l=0
∑s

m=0 al,mtlWm(t) and g =
∑N−1

l′=0
∑s′

m′=0 al′,m′ tl′Wm′(t) be arbitrary
matrix polynomials. Then ⟨·, ·⟩W can be represented as follows

⟨ f , g⟩W =
∫

f dM̂gT

+

r∑
m=1

(
J1( f [m]) · · · Jq( f [m])

)
T−1


Ω̂Nm,0 · · · Ω̂Nm,N−1
...

Ω̂N−1+Nm,0 · · · Ω̂N−1+Nm,N−1

T−T


J1(g)T

...
Jq(g)T


+

r∑
m=1

(
J1( f ) · · · Jq( f )

)
T−1


Ω̂0,Nm · · · Ω̂0,N−1+Nm
...

Ω̂N−1,Nm · · · Ω̂N−1,N−1+Nm

T−T


J1(g[m])T

...
Jq(g[m])T


+

(
J1( f ) · · · Jq( f )

)
T−1


Ω̂0,0 · · · Ω̂0,N−1
...

Ω̂N−1,0 · · · Ω̂N−1,N−1

T−T


J1(g)T

...
Jq(g)T

 ,
where r = max{s, s′}, and

Ω̂i+N j,i′+N j′ =
⟨
tiW j(t), ti′W j′(t)

⟩
W
−

∫
tiW j(t)dM̂

(
ti′W j′(t)

)T
, (15)

i.e., the difference between the moments associated with the bilinear form ⟨·, ·⟩W and
the moments associated with dM̂.

Remark 6. For m = 0, . . . , r, the matrices

 Ω̂Nm,0 ··· Ω̂Nm,N−1

...
Ω̂N−1+Nm,0 ··· Ω̂N−1+Nm,N−1

,
 Ω̂0,Nm ··· Ω̂0,Nm+N−1

...
Ω̂N−1,Nm ··· Ω̂N−1,Nm+N−1

, and

 Ω̂0,0 ··· Ω̂0,N−1

...
Ω̂N−1,0 ··· Ω̂N−1,N−1


depend on the the moments µ̂k,Nm′+k′ and µ̂Nm+k,k′ , which can be chosen arbitrarily
for 0 ≤ k, k′ ≤ N − 1.
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Proof. Let us write

⟨ f , g⟩W =
⟨N−1∑

l=0

s∑
m=1

al,mtlWm(t),
N−1∑
l′=0

s′∑
m′=1

bl′,m′ tl′Wm′ (t)
⟩

W

+

⟨N−1∑
l=0

s∑
m=1

al,mtlWm(t),
N−1∑
l′=0

bl′,0tl′
⟩

W

+

⟨N−1∑
l=0

al,0tl,

N−1∑
l′=0

s′∑
m′=1

al′,m′ tl′Wm′(t)
⟩

W

+

⟨N−1∑
l=0

al,0tlWm(t),
N−1∑
l′=0

bl′,0tl′
⟩

W

=

∫
f dM̂gT +

⟨N−1∑
l=0

s∑
m=1

al,mtlWm(t),
N−1∑
l′=0

bl′,0tl′
⟩

W

−
∫ N−1∑

l=0

s∑
m=1

al,mtlWm(t)dM̂

N−1∑
l′=0

bl′,0tl′


T

+

⟨N−1∑
l=0

al,0tl,

N−1∑
l′=0

s′∑
m′=1

bl′,m′ tl′Wm′(t)
⟩

W

−
∫ N−1∑

l=0

al,0tldM̂

N−1∑
l′=0

s′∑
m′=1

bl′,m′ tl′Wm′(t)


T

+

⟨N−1∑
l=0

al,0tlWm(t),
N−1∑
l′=0

bl′,0tl′
⟩

W

−
∫ N−1∑

l=0

al,0tldM̂

N−1∑
l′=0

bl′,0tl′


T

.

Defining Ω̂i+N j,i′+N j′ as in (15), we get

N−1∑
l′=0

N−1∑
l=0

s∑
m=1

al,mΩ̂l+Nm,l′bT
l′,0 =

=
(∑N−1

l=0
∑s

m=1 al,mΩ̂l+Nm,0 · · · ∑N−1
l=0

∑s
m=1 al,mΩ̂l+Nm,N−1

) 
bT

0,0
...

bT
N−1,0


=

s∑
m=1


(
a0,m · · · aN−1,m

) 
Ω̂Nm,0
...

Ω̂N−1+Nm,0

 · · ·
(
a0,m · · · aN−1,m

) 
Ω̂Nm,N−1
...

Ω̂N−1+Nm,N−1





bT
0,0
...

bT
N−1,0


=

s∑
m=1

(
a0,m · · · aN−1,m

) 
Ω̂Nm,0 · · · Ω̂Nm,N−1
...

Ω̂N−1+Nm,0 · · · Ω̂N−1+Nm,N−1




bT
0,0
...

bT
N−1,0

 .
Similarly,

N−1∑
l′=0

N−1∑
l=0

s∑
m′=1

al,0Ω̂l,Nm′+l′bT
l′,m′

=

s′∑
m′=1

(
a0,0 · · · aN−1,0

) 
Ω̂0,Nm′ · · · Ω̂0,Nm′+N−1
...

Ω̂N−1,Nm′ · · · Ω̂N−1,Nm′+N−1




bT
0,m′
...

bT
N−1,m′

 ,
and taking into account the previous equations and (14), the result follows. The limit
on the sums can be taken as r = max{s, s′} since the additional terms vanish. �

Corollary 1. If W(t) = (tIp − A), then
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⟨ f , g⟩W =
∫

f dM̂gT +

s∑
i=1

f (i)(A)
1
i!
Ω̂i,0[g(A)]T

+

s∑
i=1

f (A)
1
i!
Ω̂0,i[g(i)(A)]T + f (A)Ω̂0,0[g(A)]T .

Proof. Given a polynomial f (t) of degree s, it can be written as
∑s

m=0 am(tIp − A)m,
where am ∈ Rp×p. Assume without loss of generality that

A =


Np1 (λ1)

. . .

Npr (λr)

 , with Npk (λk) =



λk 1
λk 1
. . .

. . .

λk 1
λk


pk×pk

,

for p1+ · · ·+ pr = p. Given a zero λk of W(t), define the sequence of vectors (v[1]
j,k )pk−1

j=0

as follows: v[1]
j,k = ep0+···pk−1+ j+1 where ei = (0 · · · , 1i, · · · 0)T

p . Since

v[1]
j−1,k + (λkIp − A)v[1]

j,k = 0, j = 0, · · · , pk−1,

then (v[1]
j,k )pk−1

j=0 is a Jordan chain corresponding to λk. Thus, if v1,k(t) =
∑pk−1

j=0 (t −
λk) jv[1]

j,m, then (see Definition 2)

Jk,1( f [m]) = amv[1]
j,m.

Thus, for k = 1, . . . , r, we have(
J1( f [m]) · · · Jr( f [m])

)
= am

(
v[1]

0,1 · · · v[1]
p1−1,1 · · · v[1]

0,r · · · v[1]
pr−1,r

)
= amIp =

1
m!

f (m)(A).

The above yields the result. Notice the connection between the Jordan chain and the
evaluation of a polynomial at a matrix. �

3. Connection formulas
Let (P̂n(t))n∈N be the sequence of monic orthogonal matrix polynomials with respect
to ⟨·, ·⟩W . Using the basis BW we can write P̂n+N(t) as

P̂n+N(t) =
∑
m≥0

N−1∑
l=0

a[n+N]
l,m tlWm(t).

Let HB and ĤB be the moment matrices with respect ⟨·, ·⟩L and ⟨·, ·⟩W , respectively,
computed in terms of the basis BW . Denoting rNm+l(t) =: tlWm(t), 0 ≤ l ≤ N − 1,
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and using the ideas described in Remark 3, we have

P̂n+N(t) = rn+N(t) −
(
µ̂n+N,0 µ̂n+N,1 · · · µ̂n+N,N+n−1

)
(ĤB)−1

n+N


r0(t)
r1(t)
...

rn+N−1(t)

 .
Furthermore, we have

(ĤB)n+N =

(
(ĤB)N Ẽn

ẼT
n (HB)n

)
, where Ẽn =


µ̂0,N · · · · · · µ̂0,N+n−1
...

...
µ̂N−1,N · · · · · · µ̂N−1,N+n−1

 .
With this in mind, and using the inverse formula for 2 × 2 block matrices obtained
from the Schur complement (see [26]), we obtain(
J1(P̂n+N), · · · , Jq(P̂n+N)

)
=

[ (
µ̂n+N,0 · · · µ̂n+N,N−1

)
−

(
µn,0 · · · µn,n−1

)
(HB)−1

n ẼT
n

] (
(ĤB)N − Ẽn(HB)−1

n ẼT
n

)−1
T.

As consequence,

(
J1(P̂n+N), · · · , Jq(P̂n+N)

)
T−1 =

(⟨
Pn(t), Ip

⟩
W
· · ·

⟨
Pn(t), tN−1Ip

⟩
W

)
|(ĤW )n+N |−1.

Let εn+N =: ( ⟨Pn(t),Ip⟩W ··· ⟨Pn(t),tN−1Ip⟩W )|(ĤW )n+N |−1. Therefore, we can establish the
following connection formula.

Proposition 7. Assuming that ⟨·, ·⟩W is nontrivial, the following connection for-
mula holds

P̂n+N(t) = Pn(t)W(t) + εn+N




Ip
...

tN−1Ip

 −
n−1∑
k=0


E0,k
...

EN−1,k

 Pk(t)W(t)

 ,
where

El,k =
⟨
tlIp, PkW(t)

⟩
W
∥Pk∥−2

L .

Proof. Let P̂n+N(t) =
∑

m>0
∑N−1

l=0 â[n+N]
l,m tlWm(t) be the matrix orthogonal polyno-

mial of degree N + n with respect to ⟨·, ·⟩W given in terms of the basis Bw. Since
(Pn(t)W(t))n∈N is a basis of the left module Rp×p[t]W(t), then there exist matrices
(γn,k)n−1

k=0 such that

P̂n+N(t) −
N−1∑
l=0

â[n+N]
l,0 tl = Pn(t)W(t) +

n−1∑
k=0

γn,kPk(t)W(t).

Since for k = 1, . . . , n − 1, we have⟨
P̂n+N(t) −

N−1∑
l=0

â[n+N]
l,0 tl, Pk(t)W(t)

⟩
W

= −
N−1∑
l=0

â[n+N]
l,0

⟨
tlIp, Pk(t)W(t)

⟩
W
, (16)
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and thus,

γn,k = −
N−1∑
l=0

â[n+N]
l,0

⟨
tlIp, Pk(t)W(t)

⟩
W
∥Pk∥−2

L = −
N−1∑
l=0

â[n+N]
l,0 El,k. (17)

Using (16) and (17) we get

P̂n+N(t) = Pn(t)W(t) +
N−1∑
l=0

â[n+N]
l,0

tlIp −
n−1∑
k=0

El,kPk(t)W(t)

 , (18)

and since
(
J1

(
P̂n+N(t)

)
· · · Jq

(
P̂n+N(t)

))
T−1 =

(
â[n+N]

0,0 â[n+N]
1,0 · · · â[n+N]

N−1,0

)
we

get the result. �

Proposition 8. The sequences (Pn(t))n∈N and (P̂n(t))n∈N satisfy the following in-
verse connection formula

PW(t) = MP̂, (19)

where P̂ = [P̂T
0 (t), P̂T

1 (t), . . .]T and M is a block lower Hessenberg matrix with block
entries

βn,k =


Ip, if k = n + N,⟨

Pn(t)W(t),
∑N−1

l=0 â[k]
l,0 tl

⟩
W
∥P̂k∥−2

W , if 0 ≤ k ≤ (N − 1) + n,
0p×p, otherwise.

Proof. Since (P̂n(t))n∈N is a basis of the left moduleRp×p[t], then there exist matrices
(βn,k)n+N−1

k=0 such that

Pn(t)W(t) = P̂n+N(t) +
n+N−1∑

k=0

βn,kP̂k(t).

If k < N, then

βn,k =

⟨
Pn(t)W(t),

N−1∑
l=0

â[k]
l,0 tl

⟩
W

∥P̂k∥−2
W .

On the other hand, if k ≥ N, using (18) we get⟨
PnW(t), P̂k(t)

⟩
W
=

⟨
PnW(t), Pk−N(t)W(t) +

N−1∑
l=0

â[k]
l,0

tlIp −
k−N−1∑

i=0

El,iPi(t)W(t)

⟩
W

=

N−1∑
l=0

⟨PnW(t), tlIp

⟩
W
−

k−N−1∑
i=0

⟨PnW(t), Pi(t)W(t)⟩W ET
l,i

 â[k]T
l,0

=

⟨
PnW(t),

N−1∑
l=0

â[k]
l,0 tl

⟩
W

.

The above implies that for k = 0, . . . ,N + n − 1,

βn,k =

⟨
Pn(t)W(t),

N−1∑
l=0

â[k]
l,0 tl

⟩
W

∥P̂k∥−2
W .

�
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Remark 9. The quantities εn+N , El,k, and βn,k appearing in Propositions 7 and 8,
which depend on the sesquilinear form ⟨·, ·⟩W , can be obtained using only "non-
perturbed" data using Proposition 5.

Since ⟨·, ·⟩W is a sesquilinear form that not necessarily satisfies ⟨tP,Q⟩W = ⟨P, tQ⟩W
for every P,Q ∈ Rp×p[t], then the semi-infinite block matrix Ĵ associated with the
multiplication operator by t with respect to the sequence of polynomials (P̂n(t))n∈N
(i.e., P̂t = ĴP̂) is a block Hessenberg matrix.

Proposition 10. Let W(t) =
∑N

j=0 c jt j, c j ∈ Rp×p. If J and Ĵ are the block Ja-
cobi and block Hessenberg matrices with respect to the sequences of monic matrix
orthogonal polynomials (Pn(t))n∈N, (P̂n(t))n∈N, respectively, then

WT (J) = ML, WT̂ (Ĵ) = LM,

where WT (t) =
∑N

j=0(T ~ β j)T−1t j, WT̂ (t) =
∑N

j=0(T̂ ~ β j)T̂−1t j and L is the lower
triangular block matrix with Ip in the diagonal and such that P̂ = LP.

Proof. From the hypothesis and (19), we get PW(t) = (ML)P and P̂W(t) = (LM)P̂.
On the other hand, taking into account that P = Tχ(t) and the properties of the shift
matrix, we have

PW(t) =
N∑

j=0

(
(T ~ c j)T−1

)
Pt j

=

N∑
j=0

(
(T ~ c j)T−1

)
JPt j−1 = · · · =

N∑
j=0

(
(T ~ c j)T−1

)
J jP

= WT (J)P.

Thus (WT (J) − ML)P = 0 where 0 is the semi-infinite matrix of zeros. Due to J
has Jacobi block structure, then it is easy to see that both WT (J) and ML are block
Hessenberg matrices with shape

N+n︷                   ︸︸                   ︷
∗ ∗ · · · Ip

∗ ∗ · · · ∗
∗ ∗ · · · ∗
· · · · · · · · · · · ·

Ip

∗ Ip

· · · · · · · · ·

 .
Since (Pn(t))n∈N is a basis of left module Rp×p[t] we conclude that WT (J)−ML = 0.
The other equation can be obtained in a similar way. �

4. Stieltjes function for the perturbed sesquilinear form
Let us assume that ⟨·, ·⟩W satisfies

m̂n,k =
⟨
tnIp, tkIp

⟩
W
=

⟨
tn+kIp, Ip

⟩
W
=

⟨
Ip, tn+kIp

⟩
W
=: m̂n+k, n,m ∈ N. (20)

On the other hand, if W(t) has q zeros λ1, . . . λq such that dim[Ker(λi)] = αi and∑q
i=1 αi = N p, then each λi has αi associated linearly independent eigenvectors,

so we will assume that W(t) has N p zeros λ1 . . . λN p with associated eigenvectors
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v1 . . . vN p. Assume also that the matrices Ω̂i+N j,i′+N j′ defined in (15) are the zero
matrix if j or j′ are different from zero and

T−1


Ω̂0,0 · · · Ω̂0,N−1
...

Ω̂N−1,0 · · · Ω̂N−1,N−1

T−T = diag(l1, · · · lN p),

where l1 . . . , lN p ∈ R. With these assumptions, it is easy to see that the representation
for ⟨·, ·⟩W becomes

⟨P,Q⟩W =
∫

PdM̂QT +

N p∑
k=0

P(λk)vklkvT
k QT (λk),

and satisfies (20). In general, if we assume that ⟨·, ·⟩W satisfies (20) and W(t) =∑N
k=0 cktk, then from (10)

mn = ⟨tnW(t),W(t)⟩W =
N∑

k,i=0

ck

⟨
tn+kIp, tiIp

⟩
W

cT
i =

∑
k,i=0

ckm̂n+k+icT
i .

As a consequence, the relation between the corresponding matrix Stieltjes functions
can be obtained from

F(t) =
∞∑

i=0

mn

tn+1 =

∞∑
n=0

N∑
i,k=0

ck
m̂n+k+i

tn+k+i+1 tk+icT
i

=

∞∑
n=0

N∑
i,k=0

ck

 m̂n+k+i

tn+k+i+1 tk+i +

k+i−1∑
s=0

m̂s

ts+1 tk+i −
k+i−1∑

s=0

m̂s

ts+1 tk+i

 cT
i

=

N∑
i,k=0

ck

F̂(t)tk+i −
k+i−1∑

s=0

m̂s

ts+1 tk+i

 cT
i

= W(t)F̂(t)WT (t) − B(t),

where B(t) =
∑N

i,k=0 ck

[∑k+i−1
s=0

m̂s
ts+1 tk+i

]
cT

i is a matrix polynomial of degree 2N − 1.
In other words, the Stieltjes functions associated with the original and the perturbed
sesquilinear forms are related by

F̂(t) = W(t)−1 [F(t) + B(t)] W−T (t).

Acknowledgements
We thank the valuable suggestions, comments and criticism by the referees. They
significantly improved the contents and presentation of the manuscript. The work
of Luis E. Garza was supported by Conacyt (México), grant 156668. The work
of Juan Carlos García-Ardila and Francisco Marcellán has been supported by Di-
rección General de Investigación, Científica y Técnica , Ministerio de Economía y
Competitividad of Spain, grant MTM2015-65888-C4-2-P.



Geronimus transformation for orthogonal matrix polynomials on the real line 21

References
[1] N. I. Akhiezer, Classical moment problem and related questions in analysis, Oliver &

Boyd, Edinburgh 1965.
[2] C. Álvarez-Fernández, G. Ariznabarreta, J. C. García-Ardila, M. Mañas, F. Marcel-

lán, Christoffel transformations for matrix orthogonal polynomials in the real line
and the non-Abelian 2D Toda lattice hierarchy, Internat. Math. Res. Notices, doi:
10.1093/imrn/rnw027, 2016.

[3] C. Álvarez-Fernández, G. Ariznabarreta, J. C. García-Ardila, M. Mañas, F. Marcellán,
Transformation theory and Christoffel formulas for matrix biorthogonal polynomials on
the real line arXiv:1605.04617 [math.CA].

[4] G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge Univ. Press, Cam-
bridge, 1999.

[5] A. I. Aptekarev, E. M. Nikishin, The scattering problem for a discrete Sturm-Liouville
operator, Mat. Sb 121 (163): 327-358 (1983); Math. USSR Sb. 49 (1984), 325-355.

[6] G. Ariznabarreta, M. Mañas, Darboux transformations for multivariate orthogonal
polynomials, arXiv preprint arXiv:1503.04786.

[7] M. J. Cantero, F. Marcellán, L. Moral, L. Velázquez, Darboux transformations for CMV
matrices Adv. Math. 208 (2016), 122-206.

[8] M. M. Castro, F. A. Grünbaum, Orthogonal matrix polynomials satisfying first order
differential equations: a collection of instructive examples, J. Nonlinear Math. Phys. 12
(2005), suppl. 2, 63-76.

[9] T. S. Chihara, An Introduction to Orthogonal Polynomials. In : Mathematics and its Ap-
plications Series, Vol. 13. Gordon and Breach Science Publishers, New York-London-
Paris, 1978.

[10] R.G. Cooke, Infinite Matrices and Sequence Spaces, Macmillan & Co., Ltd., London,
1950.

[11] A. E. Choque Rivero, L. E. Garza, Moment perturbation of matrix polynomials, Integral
Transforms Spec. Funct. 26 (2015), 177-191.

[12] D. Damanik, A. Pushnitski, B. Simon, The analytic theory of matrix orthogonal poly-
nomials, Surv. Approx. Theory 4 (2008), 1-85.

[13] M. Derevyagin, J. C. García-Ardila, F. Marcellán, Multiple Geronimus transformations,
Linear Algebra Appl. 454 (2014), 158-183.

[14] M. Derevyagin, F. Marcellán, A note on the Geronimus transformation and Sobolev
orthogonal polynomials, Numer. Algorithms 67 (2014), 271-287.

[15] A. J. Durán, Markov’s theorem for orthogonal matrix polynomials, Canad. J. Math. 48
(1996), 1180-1195.

[16] A. J. Durán, Ratio asymptotic for orthogonal matrix polynomials, J. Approx. Theory
100 (1999), 304-344.

[17] A. J. Durán, F. A. Grünbaum, Orthogonal matrix polynomials, scalar-type Rodrigues’
formulas and Pearson equations, J. Approx. Theory 134 (2005), 267-280.

[18] A. J. Durán, F. A. Grünbaum, A survey on orthogonal matrix polynomials satisfying
second order differential equations, J. Comput. Appl. Math. 178 (2005), 169-190.

[19] A. J. Durán, P. López-Rodríguez, Orthogonal matrix polynomials: Zeros and Blumen-
thal’s theorem, J. Approx. Theory 84 (1996), 96-118.

[20] A. J. Durán, W. Van Assche, Orthogonal matrix polynomials and higher-order recur-
rence relations, Linear Algebra Appl. 219 (1995), 261-280.



22 Juan Carlos García-Ardila, Luis E. Garza and Francisco Marcellán

[21] I. Gelfand, S. Gelfand, V. Retakh, R. L. Wilson, Quasideterminants, Adv. Math. 193
(2005), 56-141.

[22] I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials, Computer Science and Ap-
plied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New
York-London, 1982

[23] F. A. Grünbaum, The Darboux process and a noncommutative bispectral problem: some
explorations and challenges, in Geometric aspects of analysis and mechanics 161-177,
Progr. Math., 292, Birkhäuser/Springer, New York 2011.

[24] F. A. Grünbaum, L. Haine, Bispectral Darboux transformations: an extension of the
Krall polynomials, Internat. Math. Res. Notices 8 (1997), 359-392.

[25] F. A. Grünbaum and M. Yakimov, Discrete bispectral Darboux transformations from
Jacobi operators, Pacific J. Math. 204 (2002), 395-431.

[26] R. A. Horn, C. R. Johnson, Matrix Analysis, Second Edition, Cambridge University
Press, Cambridge, 2013.

[27] S. Lang, Algebra, , Third Edition, Springer-Verlag, New York, 2005.

[28] A. S. Markus, Introduction to the spectral theory of polynomials operator pencil, Trans-
lated from the Russian by H. H. McFaden. Translation edited by Ben Silver. With an ap-
pendix by M. V. Keldysh. Translations of Mathematical Monographs, 71. Amer. Math.
Soc., Providence, RI, 1988.

[29] L. Miranian, Matrix valued orthogonal polynomials on the real line: some extensions
of the classical theory, J. Phys. A, 38 (2005), 5731-5749.

[30] L. Rowen, Ring Theory, Vol. I, Academic Press, San Diego, CA, 1988.

[31] A. Sinap, W. Van Assche, Polynomial interpolation and Gaussian quadrature for
matrix-valued functions, Linear Algebra Appl. 207 (1994), 71-114.

[32] A. Sinap, W. Van Assche, Orthogonal matrix polynomials and applications, J. Comput.
Appl. Math. 66 (1996), 27-52.

[33] A. Zhedanov, Rational spectral transformations and orthogonal polynomials, J. Com-
put. Appl. Math. 85 (1997), 67-86.

Juan Carlos García-Ardila
Departamento de Matemáticas, Universidad Carlos III de Madrid,
Avenida Universidad 30, Leganés,
Spain
e-mail: jugarcia@math.uc3m.es

Luis E. Garza
Facultad de Ciencias, Universidad de Colima,
Bernal Díaz del Castillo 340, Colima
México
e-mail: garzaleg@gmail.com



Geronimus transformation for orthogonal matrix polynomials on the real line 23

Francisco Marcellán
Departamento de Matemáticas, Universidad Carlos III de Madrid,
Avenida Universidad 30, Leganés,
Instituto de Ciencias Matemáticas (ICMAT),
C/ Nicolás Cabrera, 13-15,
Campus de Cantoblanco UAM, 28049 Madrid,
Spain
e-mail: pacomarc@ing.uc3m.es


