
On Freud-Sobolev type orthogonal polynomials

Luis E. Garza1, Edmundo J. Huertas2,†, and Francisco Marcellán3

1Facultad de Ciencias, Universidad de Colima,
Bernal Dı́az del Castillo, No. 340, C.P. 28045 Colima, México.
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C/ Alfonso XII, 3 y 5, 28014 Madrid, Spain.
ej.huertas.cejudo@upm.es, ehuertasce@gmail.com
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Abstract

In this contribution we deal with sequences of monic polynomials orthogonal with respect to the Freud
Sobolev-type inner product

〈p, q〉s =
∫

R

p(x)q(x)e−x4

dx+M0p(0)q(0) +M1p
′(0)q′(0),

where p, q are polynomials,M0 andM1 are nonnegative real numbers. Connection formulas between these
polynomials and Freud polynomials are deduced and, as an application, an algorithm to compute their
zeros is presented. The location of their zeros as well as their asymptotic behavior is studied. Finally, an
electrostatic interpretation of them in terms of a logarithmic interaction in the presence of an external
field is given.
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1. Introduction

Let P be the linear space of polynomials with real coefficients, and let us introduce the following inner
product

〈p, q〉 =
∫

R

p(x)q(x)e−x4

dx, p, q ∈ P. (1)

Let {Fn(x)}n≥0 be the corresponding sequence of monic orthogonal polynomials (MOPS, in short). Since

the linear functional u associated with ω(x) = e−x4

, i.e.

〈u, p(x)〉 =
∫

R

p(x)ω(x)dx,

satisfies the distributional (or Pearson) equation

[σ(x)ω(x)]′ = τ(x)ω(x),
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where σ(x) = 1 and τ(x) = −4x3, {Fn}n≥0 constitutes a family of semi–classical orthogonal polynomials
(see [18], [21]). Indeed, this is a particular case of the so-called Freud type inner products [4].

Recent studies about this type of weights, including some parameters in the weight function ω(x), are
[8], [9] and [11].

In this contribution, we consider the diagonal Freud Sobolev-type inner product

〈p, q〉s = 〈p, q〉+ pT (0)Mq(0), (2)

where
p(0) = [p(0), p′(0), . . . , p(s)(0)]T

is a column vector of dimension s+ 1, the column vector q(0) is defined in an analogous way, and M is
the diagonal and positive definite (s+ 1)× (s+ 1) matrix

M = diag [M0,M1, . . . ,Ms], Mk ∈ R+, k = 0, 1, · · · , s.

Thus, (2) reads

〈p, q〉s = 〈p, q〉+
s
∑

k=0

Mkp
(k)(0)q(k)(0). (3)

We will denote by {Qn(x)}n≥0 the MOPS with respect to the above inner product. This is the so called
diagonal case for Sobolev-type inner products, see [2]. If there are no derivatives involved therein (i.e.,
s = 0), the polynomials orthogonal with respect to (3) are known in the literature as Krall–type orthogonal
polynomials, and they are orthogonal with respect to a standard inner product, because the operator of
multiplication by x is symmetric with respect to such an inner product, i.e. 〈xp, q〉s=0 = 〈p, xq〉s=0,
for every p, q ∈ P. On the other hand, when s > 0 (2) becomes non–standard, and the corresponding
polynomials are called Sobolev–type orthogonal polynomials. In this work we consider the Sobolev case,
so we will refer Qn(x) as Freud–Sobolev type orthogonal polynomials.

The structure of the manuscript is as follows. In Section 2 we present the basic background regarding
these polynomials, as well as some connection formulas between monic Freud-Sobolev type and monic
Freud orthogonal polynomials. These results will be used in the sequel. In Section 3 we present an
algorithm to numerically compute the zeros of the Freud-Sobolev type orthogonal polynomials, as the
eigenvalues of a certain matrix. In Section 4 we study some analytic properties of zeros of Freud-Sobolev
type orthogonal polynomials, in particular interlacing and asymptotic behavior. Section 5 is focused on
the second order linear differential equation that such polynomials satisfy. As a direct consequence, the
electrostatic interpretation of these polynomials in terms of a logarithmic potential interaction and an
external potential is presented.

2. Background

Freud orthogonal polynomials are very well known in the literature. In the next Proposition, we
summarize some of their properties that will be used in the sequel.

Proposition 1. Let {Fn(x)}n≥0 denote the sequence of monic polynomials orthogonal with respect to
(1). Then, the following structural properties hold.

(I) Norm.

||Fn||2 =

∫

R

[Fn(x)]
2e−x4

dx.

(II) Three term recurrence relation (see [12]). Since ω(x) is an even weight function, the family
{Fn(x)}n≥0 is symmetric. For every n ∈ N,

xFn(x) = Fn+1(x) + a2nFn−1(x), n ≥ 1, (4)

with F−1 := 0, F0(x) = 1, F1(x) = x. Also, a2n = ||Fn||
2

||Fn−1||2
, n ≥ 1, a0 = 0, and

a21 =

∫

R
x2ω(x)dx
∫

R
ω(x)dx

=
Γ
(

3
4

)

Γ
(

1
4

) .
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(III) String equation (see [23, (2.12)]). An important feature of these polynomials is that the recurrence
coefficients an in the above three term recurrence relation, satisfy the following nonlinear difference
equation

4a2n
(

a2n+1 + a2n + a2n−1

)

= n, n ≥ 1.

This is known in the literature as the string equation or Freud equation (see [12], [14, (3.2.20)],
among others).

(IV) ([19, Th. 5]). The polynomials Fn(x) satisfy

F ′
n(x) = −4xa2nFn(x) + 4a2nφn(x)Fn−1(x), (5)

and

F ′′
n (x) = [16a4nx

2 − 4a2n − 16a2nφn(x)φn−1(x)]Fn(x) (6)

+[8a2nx+ 16a2nx
3φn(x)]Fn−1(x),

where (see [19, eq. (14)])
φn(x) = a2n+1 + a2n + x2.

(V) Asymptotic behavior of the coefficients of the three term recurrence relation (see [15], [20])

a2n =
( n

12

)
1
2

[

1 +
1

24n2
+O(n−4)

]

(7)

(VI) Strong inner asymptotics (see [19, Th. 1], and eq.(8) in [20]). Let {fn}n≥0 denote the sequence of
polynomials orthonormal with respect to (1). That is,

fn(x) = γnFn(x) = γnx
n + lower degree terms,

where γn =
(

||Fn||2
)−1/2

> 0. Then,

fn (x) = Aex
4/2n−1/8×

sin

{

(

64

27

)1/4

n3/4x+ 12−1/4n1/4x3 − n− 1

2
π

}

+ o(n−1/8), (8)

where A = 8
√
12/

√
π, uniformly for x in every compact subset ∆ ⊂ R.

The kernel polynomials associated with the polynomial sequence {Fn}n≥0 will play a key role in order
to prove some of the results of the manuscript. The n-th degree reproducing kernel associated with
{Fn}n>0 is (see [7, Ch. I-7], [22])

Kn(x, y) =

n
∑

k=0

Fk(x)Fk(y)

||Fk||2
.

For x 6= y, the Christoffel-Darboux formula reads

Kn(x, y) =
1

||Fn||2
Fn+1(x)Fn(y)− Fn+1(y)Fn(x)

x− y
, (9)

and its confluent expression becomes

Kn(x, x) =

n
∑

k=0

[Fk(x)]
2

||Fk||2
=
F ′
n+1(x)Fn(x)− F ′

n(x)Fn+1(x)

||Fn||2
. (10)

We introduce the following standard notation for the partial derivatives of the n-th degree kernel Kn(x, y)

∂j+kKn (x, y)

∂jx∂ky
=: K(j,k)

n (x, y) , 0 ≤ j, k ≤ n. (11)
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Thus,

K
(0,1)
n−1 (x, 0) = K

(1,0)
n−1 (0, x) =

1

||Fn−1||2
× (12)

[

Fn(x)Fn−1(0)− Fn−1(x)Fn(0)

x2
+
Fn(x)F

′
n−1(0)− Fn−1(x)F

′
n(0)

x

]

,

and, considering the coefficient of x in the above expression, we have

K
(1,1)
n−1 (0, 0) =

1

||Fn−1||2
×

[

F ′′′
n (0)Fn−1(0)− F ′′′

n−1(0)Fn(0)

6
+
F ′′
n (0)F

′
n−1(0)− F ′′

n−1(0)F
′
n(0)

2

]

.

From (10)

Kn−1(0, 0) =
F ′
n(0)Fn−1(0)− F ′

n−1(0)Fn(0)

||Fn−1||2
,

and taking limit in (12) when x→ 0, we get

K
(0,1)
n−1 (0, 0) = K

(1,0)
n−1 (0, 0) =

1

||Fn−1||2
F ′′
n (0)Fn−1(0)− F ′′

n−1(0)Fn(0)

2
.

Taking a suitable index shifting in the last three expressions, we conclude

K2n−1(0, 0) =
−F ′

2n−1(0)F2n(0)

||F2n−1||2
,

K
(0,1)
2n−1(0, 0) = K

(1,0)
2n−1(0, 0) = 0, (13)

K
(1,1)
2n−1(0, 0) =

1

||F2n−1||2
[

F ′′
2n(0)F

′
2n−1(0)

2
− F ′′′

2n−1(0)F2n(0)

6

]

as well as

K2n(0, 0) =
F ′
2n+1(0)F2n(0)

||F2n||2
,

K
(0,1)
2n (0, 0) = K

(1,0)
2n (0, 0) = 0, (14)

K
(1,1)
2n (0, 0) =

1

||F2n||2
[

F ′′′
2n+1(0)F2n(0)

6
− F ′′

2n(0)F
′
2n+1(0)

2

]

.

Another interesting property of the Freud kernels arises from the symmetry of {Fn(x)}n≥0. From
(10) and (11) we have

K2n+1(x, 0) =

n−1
∑

i=0

F2i(0)

‖F2i‖2
F2i(x) = K2n(x, 0),

K
(0,1)
2n (x, 0) = K

(0,1)
2n−1(x, 0),

K
(1,1)
2n (x, 0) =

F ′
2n(x)F

′
2n(0)

‖F2n‖2
+K

(1,1)
2n−1(x, 0) = K

(1,1)
2n−1(x, 0),

This fact will be useful throughout the paper.

On the other hand, {F [2]
n }n≥0 will denote the sequence of 2-iterated monic Freud kernel polynomials,

orthogonal with respect to the inner product

〈p, q〉[2] =
∫

R

p(x)q(x)x2e−x4

dx, (15)
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which is the 2-iterated Christoffel transformation of µ (see [24]). We will denote by

||F [2]
n ||2[2] = 〈F [2]

n , F [2]
n 〉[2] =

∫

R

|F [2]
n (x)|2x2e−x4

dx

the corresponding norm. For convenience of the reader, we briefly reproduce here a useful Lemma already
proved in ([3, Lemmas 1 and 2]), concerning sequences of 2-iterated monic Freud kernel polynomials.

Lemma 1 (Christoffel formula). The 2-iterated Freud kernel polynomials and the Freud orthogonal
polynomials satisfy the connection formulas,

x2F
[2]
2n−1(x) = F2n+1(x) + d2n−1 F2n−1(x), n ≥ 1,

x2F
[2]
2n (x) = F2n+2(x) + d2n F2n(x), n ≥ 1,

where

d2n−1 =
||F [2]

2n−1||2[2]
||F2n−1||2

=
−F ′

2n+1(0)

F ′
2n−1(0)

, d2n =
||F [2]

2n ||2[2]
||F2n||2

=
−F2n+2(0)

F2n(0)
.

Furthermore,

x2F
[2]
2n−1(x) = xF2n(x) + (d2n−1 − a22n)F2n−1(x),

xF
[2]
2n (x) = F2n+1(x),

where d2n−1 − a22n > 0.

As a summary,
x2F [2]

n (x) = Fn+2(x) + dn Fn(x), n ≥ 0. (16)

2.1. A general connection formula

Let us consider the aforementioned Sobolev-type inner product (3). In the sequel, we will denote by
{Qn(x)}n≥0 the corresponding sequence of monic orthogonal polynomials and by

||Qn||2s = 〈Qn, x
n〉s

the norm of the n-th degree polynomial. The connection formula between {Qn(x)}n≥0 and {Fn(x)}n≥0

is stated in the following lemma.

Lemma 2. [1] For n ≥ 1, we have

Qn(x) = Fn (x)−
s
∑

k=0

MkQ
(k)
n (0)K

(0,k)
n−1 (x, 0), (17)

where, for 0 ≤ k ≤ s,

Q(k)
n (0) = (detD)

−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 +M0K
(0,0)
n−1 (0, 0) · · · Fn(0) · · · MsK

(0,s)
n−1 (0, 0)

M0K
(1,0)
n−1 (0, 0) · · · F ′

n(0) · · · MsK
(1,s)
n−1 (0, 0)

...
...

. . .
...

M0K
(s,0)
n−1 (0, 0) · · · F

(s)
n (0) · · · 1 +MsK

(s,s)
n−1 (0, 0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

with

D =













1 +M0K
(0,0)
n−1 (0, 0) M1K

(0,1)
n−1 (0, 0) · · · MsK

(0,s)
n−1 (0, 0)

M0K
(1,0)
n−1 (0, 0) 1 +M1K

(1,1)
n−1 (0, 0) · · · MsK

(1,s)
n−1 (0, 0)

...
...

. . .
...

M0K
(s,0)
n−1 (0, 0) M1K

(s,1)
n−1 (0, 0) · · · 1 +MsK

(s,s)
n−1 (0, 0)













.
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Moreover, an easy computation shows that

K
(0,k)
n−1 (x, 0) =

1

||Fn−1||2

(

k
∑

η=0

k!

η!

Fn(x)F
(η)
n−1(0)− Fn−1(x)F

(η)
n (0)

xk−η+1

)

,

and, as a consequence, we can write (17) as

xs+1Qn(x) = As(n;x)Fn(x) + Bs(n;x)Fn−1(x), (18)

where

As(n;x) =

s
∑

k=0

(

xs+1 −
k
∑

η=0

k!

η!

MkQ
(k)
n (0)F

(η)
n−1(0)

||Fn−1||2
xs−k+η

)

,

Bs(n;x) =

s
∑

k=0

(

k
∑

η=0

k!

η!

MkQ
(k)
n (0)F

(η)
n (0)

||Fn−1||2
xs−k+η

)

,

are polynomials of degree s+ 1 and s, respectively.

2.2. Connection formula for the case s = 1

In what follows, we restrict ourselves to study the case of only one mass point with derivative in the
inner product (1), i.e., s = 1, M0 ≥ 0, and M1 > 0,

〈p, q〉1 = 〈p, q〉+M0p(0)q(0) +M1p
′(0)q′(0). (19)

In such a case, the connection formula (18) becomes

x2Qn(x) = A1(n;x)Fn(x) + B1(n;x)Fn−1(x), (20)

where A1(n;x) = x2 +A10(n), and B1(n;x) = B11(n)x with

A10(n) = −M1Q
′
n(0)Fn−1(0)

||Fn−1||2
, B11(n) =

M0Qn(0)Fn(0) +M1Q
′
n(0)F

′
n(0)

||Fn−1||2
.

To obtain Qn(0) and Q
′
n(0) in the above expression, we evaluate (20) at x = 0 and solve the corres-

ponding linear system. Indeed,

Qn(0) =

∣

∣

∣

∣

∣

Fn(0) M1K
(0,1)
n−1 (0, 0)

F ′
n(0) 1 +M1K

(1,1)
n−1 (0, 0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 +M0Kn−1(0, 0) M1K
(0,1)
n−1 (0, 0)

M0K
(1,0)
n−1 (0, 0) 1 +M1K

(1,1)
n−1 (0, 0)

∣

∣

∣

∣

∣

,

Q′
n(0) =

∣

∣

∣

∣

1 +M0Kn−1(0, 0) Fn(0)

M0K
(1,0)
n−1 (0, 0) F ′

n(0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 +M0Kn−1(0, 0) M1K
(0,1)
n−1 (0, 0)

M0K
(1,0)
n−1 (0, 0) 1 +M1K

(1,1)
n−1 (0, 0)

∣

∣

∣

∣

∣

.

As a consequence,

Qn(0) =
Fn(0)

[1 +M0Kn−1(0, 0)]
, (21)

Q′
n(0) =

F ′
n(0)

1 +M1K
(1,1)
n−1 (0, 0)

. (22)
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Thus,

Q2n(0) =
F2n(0)

[1 +M0K2n−2(0, 0)]
, Q2n+1(0) = 0,

Q′
2n+1(0) =

F ′
2n+1(0)

1 +M1K
(1,1)
2n−1(0, 0)

, Q′
2n(0) = 0.

(23)

Now, we obtain connection formulas that relate both families of monic orthogonal polynomials.

Proposition 2. The Freud-Sobolev type orthogonal polynomials satisfy

x2Qn(x) =

[

x2 − rnκ
[1]
n

4φn(0)

]

Fn(x) + a2n

(

κ[0]n +κ[1]n

)

xFn−1(x), n ≥ 1, (24)

where

κ[0]n =
1 +M0Kn(0, 0)

1 +M0Kn−1(0, 0)
− 1, κ[1]n =

1 +M1K
(1,1)
n (0, 0)

1 +M1K
(1,1)
n−1 (0, 0)

− 1, rn =
1− (−1)n

2
.

Moreover, for the even and odd degrees, respectively, we have

Q2n(x) = F2n (x)−M0
F2n(0)

[1 +M0K2n−2(0, 0)]
K2n−2(x, 0), n ≥ 1, (25)

Q2n+1(x) = F2n+1 (x)−M1
F ′
2n+1(0)

1 +M1K
(1,1)
2n−1(0, 0)

K
(0,1)
2n−1(x, 0), n ≥ 1. (26)

In other words, Q2n (resp. Q2n+1) is an even (resp. odd) polynomial.

Proof. Setting s = 1 in (17) we get

Qn(x) = Fn (x)−M0Qn(0)Kn−1(x, 0)−M1Q
′
n(0)K

(0,1)
n−1 (x, 0). (27)

From (12) we have

K
(0,1)
n−1 (x, 0) =

(

Fn−1(0) + xF ′
n−1(0)

x2||Fn−1||2
)

Fn(x)−
(

Fn(0) + xF ′
n(0)

x2||Fn−1||2
)

Fn−1(x),

and taking into account (9), (21), (22), and the symmetry of the Freud polynomials, we get

Qn(x) =

[

1− Fn−1(0)

F ′
n(0)

||Fn||2
x2||Fn−1||2

(

1 +M1K
(1,1)
n (0, 0)

1 +M1K
(1,1)
n−1 (0, 0)

− 1

)]

Fn(x)

+
a2n
x

[

(

1 +M0Kn(0, 0)

1 +M0Kn−1(0, 0)
− 1

)

+

(

1 +M1K
(1,1)
n (0, 0)

1 +M1K
(1,1)
n−1 (0, 0)

− 1

)]

Fn−1(x).

Therefore, noticing that from (5) we have Fn−1(0)/F
′
n(0) = 1/4a2nφn(0), we obtain

Qn(x) =

[

1− rn
4x2φn(0)

κ[1]n

]

Fn(x) +
a2n
x

(

κ[0]n +κ[1]n

)

Fn−1(x), (28)

which is (24). On the other hand, shifting the index n → 2n, and taking into account (23) we obtain
(25). For the odd case, (26) follows similarly by using (23).

Remark 1. Notice that, from the symmetry of the Freud polynomials, we have κ
[0]
2n+1 = 0 and κ

[1]
2n = 0

for n ≥ 1. As a consequence, (24) becomes

xQ2n(x) = xF2n(x) + a22nκ
[0]
2nF2n−1(x), n ≥ 1,

x2Q2n+1(x) =

[

x2 − r2n+1κ
[1]
2n+1

4φ2n+1(0)

]

F2n+1(x) + a22n+1κ
[1]
2n+1xF2n(x), n ≥ 1.
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At this point, observe the remarkable fact, which is a straightforward consequence of (19), that the
multiplication operator by x2 is a symmetric operator with respect to such a discrete Sobolev inner
product. Indeed, for polynomials h(x), g(x) ∈ P

〈x2h(x), g(x)〉1 = 〈h(x), x2g(x)〉1, (29)

and also notice that
〈x2h(x), g(x)〉1 = 〈h(x), g(x)〉[2]. (30)

An equivalent formulation of (30) is

〈x2h(x), g(x)〉1 = 〈x2h(x), g(x)〉. (31)

The relation between the norms of Qn(x) and Fn(x) is given in the following result.

Proposition 3. For n ≥ 1, we have

‖F2n‖2
‖Q2n‖21

=
1 +M0K2n−2(0, 0)

1 +M0K2n(0, 0)
,

‖F2n+1‖2
‖Q2n+1‖21

=
1 +M1K

(1,1)
2n−1(0, 0)

1 +M1K
(1,1)
2n+1(0, 0)

.

(32)

Proof. Shifting the index n→ 2n in (24) yields

x2Q2n(x) = x2F2n(x) + a22nκ
[0]
2nxF2n−1(x),

because κ
[1]
2n = 0. Next, we multiply all the above equation by F2n−2(x) and we apply the inner product

〈·, ·〉1. Thus

〈x2Q2n(x), F2n−2(x)〉1 = 〈x2F2n(x), F2n−2(x)〉1 + a22nκ
[0]
2n〈xF2n−1(x), F2n−2(x)〉1.

Using (29), (30) and (31) we deduce

||Q2n||21 = ||F2n||2 + a22nκ
[0]
2n||F2n−1||2.

From Proposition 1-(2) we know a2n = ||Fn||2 � ||Fn−1||2, and therefore

||Q2n||21 = ||F2n||2
(

1 + κ
[0]
2n

)

which is the first equation of (32). Similar considerations lead to prove the second equation of (32), after
shifting the index n→ 2n+ 1 in (24).

Remark 2. Notice that, by defining Q2n(x) := Pn(x
2) and Q2n+1(x) := xRn(x

2), n ≥ 0, and introducing
the change of variable x =

√
y, we obtain the following orthogonality relations

0 = 〈Q2n, Q2m〉1 =

∫ ∞

0

Pn(y)Pm(y)y−1/2e−y2

dy +M0Pn(0)Pm(0), n 6= m

0 = 〈Q2n+1, Q2m+1〉1 =

∫ ∞

0

Rn(y)Rm(y)y1/2e−y2

dy +M1Rn(0)Rm(0), n 6= m,

i.e. {Pn(x)}n≥0 and {Rn(x)}n≥0 are MOPS with respect to standard inner products associated with the

measures dσ(x) = x−1/2e−x2

dx +M0δ(x) and xdσ(x) +M1δ(x), respectively, supported on the positive
real semiaxis.

To conclude this Section, we point out that the results in Propositions 3 and 2, as well as in Remark
1, appear also in [5], in a slightly different form. We have included our proofs here for the sake of
completeness.
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3. Computation of zeros

In this section, we propose an algorithm to compute in an efficient way the zeros of Freud-type
orthogonal polynomials. It is based on the relation between the Jacobi matrix associated with such
polynomials, and the Jacobi matrix associated with the 2-iterated monic Freud kernel polynomials defined
previously.

Now, we obtain connection formulas that relate {Qn}n≥0 with {F [2]
n }n≥0.

Proposition 4. Let {Qn}n≥0 be the MOPS associated with (19), and let {F [2]
n }n≥0 denote the 2-iterated

monic Freud kernel polynomials defined by (15). Then, we have

Qn(x) = F [2]
n (x) + cnF

[2]
n−2(x), (33)

where

cn =
‖Fn‖2 + dn−2[snFn−2(0) + tnF

′
n−2(0)]

dn−2‖Fn−2‖2
, (34)

with sn = − M0Fn(0)
[1+M0Kn−1(0,0)]

and tn = − M1F
′

n
(0)

[1+M1K
(1,0)
n−1 (0,0)]

.

Proof. We can expand Qn(x) in terms of the SMOP {F [2]
n (x)}n≥0 as

Qn(x) = F [2]
n (x) +

n−1
∑

k=0

αn,kF
[2]
k (x),

with

αn,k =
〈Qn, F

[2]
k 〉[2]

||F [2]
k ||2[2]

.

From (30), the above coefficient becomes

αn,k =
〈x2Qn, F

[2]
k 〉1

||F [2]
k ||2[2]

,

which, by orthogonality, it yields αn,k = 0 for 0 ≤ k ≤ n − 3 and, after some computations, it is not
difficult to deduce that

αn,n−1 =
〈Qn(x), x

2F
[2]
n−1(x)〉

‖F [2]
n−1‖2[2]

= 0.

Thus, since both families are monic, we have (33) with

cn =
〈Qn(x), x

2F
[2]
n−2(x)〉

‖F [2]
n−2‖2[2]

.

Now, taking into account (21), (22) and (27) we have

Qn(x) = Fn (x) + snKn−1(x, 0) + tnK
(0,1)
n−1 (x, 0), (35)

where

sn = −M0Qn(0) = −M0
Fn(0)

[1 +M0Kn−1(0, 0)]
, tn = −M1Q

′
n(0) = −M1

F ′
n(0)

1 +M1K
(1,1)
n−1 (0, 0)

.

Next, combining (35) with (16) we deduce

〈Qn(x), x
2F

[2]
n−2(x)〉 = 〈Fn(x) + snKn−1(x, 0) + tnK

(0,1)
n−1 (x, 0), Fn(x) + dn−2Fn−2(x)〉

= ‖Fn‖2 + dn−2[snFn−2(0) + tnF
′
n−2(0)].
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Finally, since

‖F [2]
n ‖2[2] =

∫ ∞

0

(

F [2]
n

)2

x2ex
4

dx

=

∫ ∞

0

F [2]
n [Fn+2(x) + dnFn(x)]e

x4

dx

= dn‖Fn‖2,

the result follows.
Notice that defining Qn = [Q0(x), Q1(x), . . . , Qn(x)]

T and F
[2]
n = [F

[2]
0 (x), F

[2]
1 (x), . . . , F

[2]
n (x)]T , (33)

can be written in matrix form as
Qn = HnF

[2]
n , (36)

where Hn is the (n+ 1)× (n+ 1) lower tridiagonal matrix

Hn =















1
0 1
c2 0 1

. . .
. . .

. . .

cn 0 1















.

On the other hand, let Sn be the truncated Jacobi matrix associated with {F [2]
n }n≥0, and let J̃n the

Hessenberg matrix associated with the multiplication operator with respect to the basis {Qn}n≥0, then

xQn = J̃nQn +Qn+1en+1 ,

xF[2]
n = SnF

[2]
n + F

[2]
n+1en+1 ,

where en+1 = [0, . . . , 0, 1]T . Using (36) and (33), we have

xQn = J̃nQn +Qn+1en+1

xHnF
[2]
n = J̃nHnF

[2]
n + [F

[2]
n+1(x) + cn+1F

[2]
n−1(x)]en+1

= J̃nHnF
[2]
n +AnF

[2]
n + F

[2]
n+1(x)en+1 ,

where An is the (n+ 1)× (n+ 1) matrix

An =











0 . . . . . . 0
...

...
0 . . . . . . 0
0 . . . 0 cn+1 0











.

Furthermore, since H−1
n is a lower triangular matrix with ones on the diagonal, we clearly have H−1

n An =
An and H−1

n en+1 = en+1 and, as a consequence,

xF[2]
n = H−1

n J̃nHnF
[2]
n +AnF

[2]
n + F

[2]
n+1(x)en+1,

so that
Sn = H−1

n J̃nHn +An.

Therefore, we have proved the following proposition.

Proposition 5. The following expression holds

J̃n = Hn[Sn −An]H
−1
n .

In other words, J̃n is similar to a rank one perturbation of Sn.
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Now, since the zeros of Qn(x) are the eigenvalues of J̃n, and since similar matrices have the same
eigenvalues, the zeros of Qn(x) can be computed as describes Algorithm 1.

Algorithm 1:Algorithm for computing the zeros of the Freud-type orthogonal polynomials {Qk}nk=1

Input: Matrices Ak, Sk, k = 1, . . . , n.
Output: Zeros of Qk(x), k = 1, . . . , n.

1 initialization;
2 for k = 1, 2, . . . n do
3 Compute the truncated Jacobi matrix Sk

4 Find the matrix Ak by using (34)
5 Compute numerically the eigenvalues of Sk −Ak

6 return Zeros of Qk(x) are the eigenvalues of Sk −Ak

Notice that only information related to {Fn}n≥0 and {F [2]
n }n≥0 is required. On the other hand, to

compute the Jacobi matrix associated with {Qn}n≥0, we also need to compute the matrix Hn, using
(34).

4. Analytic properties of zeros

In this Section we analyze some properties of the zeros of the polynomials {Qn(x)}n≥0. Notice that
inn our case the mass point is located in the support of the measure, while in the literature the mass
point is located either in the boundary or outside the support of the measure (see [1], [16], among others).

4.1. Interlacing rupture

From (25) and (26), it is clear that the zeros of even Q2n(x) and odd Q2n+1(x) Freud-Sobolev type
polynomials act in an independent way. From those expressions, we observe that the variation of M0 (re-
spectively M1) exclusively influences the position of the zeros of Q2n(x) (respectively Q2n+1(x)) without
affecting the zeros of Q2n+1(x) (respectively Q2n(x)). This interesting phenomena leads to the destruc-
tion of the zero interlacing for two consecutive polynomials of the sequence {Qn(x)}n≥0 for certain
values of M0 and M1. Notice that the zeros of Qn(x), n ≥ 1, are real and simple (see [16], Proposition
3.2). In the next two tables we provide numerical evidence that supports this fact. In the sequel, let
{ηn,k}nk=0 ≡ ηn,1 < ηn,2 < ... < ηn,n be the zeros of Qn(x) and {xn,k}nk=0 be the zeros of Fn(x) arranged
in an increasing order. Next we show the position of the second zero of the Freud-Sobolev-type polynomial
of degree n = 4 (namely Q4(x)) and the second and third zeros of Q5(x) for some choices of the masses
M0 and M1. For M0 = M1 = 0 we obviously recover the corresponding zeros of the Freud polynomials.
The first table shows the position of the aforementioned zeros for M0 = 0 and several values for M1. The
cases when between the second and third (resp. third and fourth) zeros of Q5(x) there are no zeros of
Q4(x), i.e. the zero interlacing for the sequence {Qn(x)}n≥0 fails, are shown in bold.

M0 = 0.0

η5,2 η4,2 η5,3 η4,3 η5,4

M1 = 0.0 −0.655248 −0.39615 0.0 0.39615 0.655248

M1 = 0.2 −0.458455 −0.39615 0.0 0.39615 0.458455

M1 = 0.4 −0.371898 −0.39615 0.0 0.39615 0.371898

M1 = 1.0 −0.261023 −0.39615 0.0 0.39615 0.261023

Table 1: Zeros of Q5(x) and Q4(x) for fixed M0 = 0.0 and some values of M1.

Observe that, as expected, the variation of M1 only affects the position of η5,2 and η5,4 and the
variation of M0 only affects the position of η4,2 and η4,4. This numerical example is also reflected in
Figure 1.
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M0 = 1.0

η5,2 η4,2 η5,3 η4,3 η5,4

M1 = 0.0 −0.655248 −0.284325 0.0 0.284325 0.655248

M1 = 0.4 −0.371898 −0.284325 0.0 0.284325 0.371898

M1 = 0.9 −0.272822 −0.284325 0.0 0.284325 0.272822

M1 = 2.0 −0.192081 −0.284325 0.0 0.284325 0.192081

Table 2: Zeros of Q5(x) and Q4(x) for fixed M0 = 1.0 and some values of M1.
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-0.2
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Figure 1: The figure shows, for a fixed value M0 = 1, the evolution of the second zero of the Freud-Sobolev type polynomial
Q5(x) for three different values of the mass M1. The curve in gray color represents the Freud-Sobolev type Q4(x), which
is not affected by the variation of M1. The zero of Q5(x;M1 = 0) = F5(x) (continuous black graph) occurs at η5,2(M1 =
0) = −0.655248. For Q5(x;M1 = 0.2) (dashed line) we have η5,2(M1 = 0.2) = −0.371898 and for Q5(x;M1 = 2) (dotted
line) occurs at η5,2(M1 = 2) = −0.19208. Notice that for M0 = 1 and M1 = 2 there is no zero of the polynomial Q4(x)
between the second (η5,2(M1 = 2) = −0.19208) and third (η5,3(M1 = 2) = 0) roots of Q5(x;M1 = 2), so the interlacing of
the complete Freud-Sobolev type orthogonal polynomial sequence {Qn(x)}n≥0 has been broken.

4.2. Asymptotic behavior

We are interested in the dynamics of the zeros of the Freud-Sobolev type when M0 and M1 tend,
respectively, to infinity. To that end, let us introduce the following the limit polynomials

G2n(x) = lim
M0→∞

Q2n(x) = F2n(x)−
F2n(0)

K2n−2(0, 0)
K2n−2(x, 0),

J2n+1(x) = lim
M1→∞

Q2n+1(x) = F2n+1 (x)−
F ′
2n+1(0)

K
(1,1)
2n−1(0, 0)

K
(0,1)
2n−1(x, 0). (37)

Similar polynomials have been previously studied in [16], when the discrete mass points are located
outside the support of the perturbed measure. Here, we find a slightly different situation because the
support of the measure is the whole real line and the discrete masses M0 and M1 are both located at
x = 0 ∈ R. As stated before, M0 only affects the even degree polynomials, and the dynamics for the zeros
of {Q2n(x)}n≥0 has been already obtained in [3]. Next, we extend those results for the odd sequence
{Q2n+1(x)}n≥0.

Our goal is to obtain results concerning the monotonicity and speed of convergence of the zeros of
Q2n+1(x). For this purpose we need the following lemma concerning the behavior and the asymptotics
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of the zeros of linear combinations of two polynomials with interlacing zeros, whose proof we omit (see
[6, Lemma 1] or [10, Lemma 3]).

Lemma 3. Let fn(x) = a(x− x1) · · · (x− xn) and jn(x) = b(x− y1) · · · (x− yn) be polynomials with real
and simple zeros, where a and b are positive real constants.

If
y1 < x1 < · · · < yn < xn,

then, for any real constant c > 0, the polynomial

qn(x) = fn(x) + cjn(x)

has n real zeros η1 < · · · < ηn which interlace with the zeros of fn(x) and jn(x) as follows

y1 < η1 < x1 < · · · < yn < ηn < xn.

Moreover, each ηk = ηk(c) is a decreasing function of c and, for each k = 1, . . . , n,

lim
c→∞

ηk = yk and lim
c→∞

c[ηk − yk] =
−fn(yk)

j′n(yk)
.

Before stating the main result of this Section, we will prove some auxiliary results concerning the

interlacing properties of {F2n+1}n≥0, {K(0,1)
2n−1(x, 0)}n≥0, and {J2n+1}n≥0.

Lemma 4. The zeros of {K(0,1)
2n+1(x, 0)}n≥0, are real and simple. Moreover, for every n ≥ 1, the non

vanishing zeros of K
(0,1)
2n+1(x, 0) and K

(0,1)
2n−1(x, 0) interlace.

Proof. First, since K
(0,1)
2n−1(x, 0) is an odd polynomial, we can write K

(0,1)
2n+1(x, 0) = xsn(x

2), where sn
is a polynomial of degree n. We will prove that {sn(y)}n≥0, with y = x2, is an orthogonal polynomial

sequence with respect to the measure dσ(y) = y3/2e−y2

dy, which is positive in the positive real line.
Indeed, for n 6= m, we have

∫ ∞

0

sn(y)sm(y)dσ(y) =

∫ ∞

−∞

K
(0,1)
2n+1(x, 0)

x

K
(0,1)
2m+1(x, 0)

x
x3e−x4

(2xdx)

= 2

∫ ∞

−∞

K
(0,1)
2n+1(x, 0)K

(0,1)
2m+1(x, 0)x

2e−x4

dx

= 0,

by using the reproducing property of K
(0,1)
2n−1(x, 0). On the other hand, for n = m, and taking into account

(12) and the symmetry of the Freud polynomials, we get

∫ ∞

0

s2n(y)dσ(y) =

∫ ∞

−∞

K
(0,1)
2n+1(x, 0)K

(0,1)
2n+1(x, 0)x

2e−x4

dx

=

∫ ∞

−∞

K
(0,1)
2n+1(x, 0)

xF2n+2(x)F
′
2n+1(0)− F2n+1(x)F2n+2(0)

‖F2n+1‖2
e−x4

dx

=
1

‖F2n+1‖2
(

(F ′
2n−1(0))

2‖F2n+2‖2 − F ′
2n+1(0)F2n+2(0)

)

> 0,

since F ′
2n+1(0)F2n+2(0) < 0. As a consequence, the zeros of sn(x) are real, simple, and they are located

in the positive real semiaxis. Moreover, the zeros of sn(x) and sn−1(x) interlace. Now, because of the

symmetry, all polynomials of the sequence {K(0,1)
2n+1(x, 0)}n≥0 have a zero at the origin, and the remaining

zeros are located symmetrically at both sides of the origin. Furthermore, if we denote by sn,k the kth

zero of sn(x), then it is clear from the definition that ±√
sn,k are zeros of K

(0,1)
2n+1(x, 0). As a consequence,

the (non vanishing) zeros of K
(0,1)
2n+1(x, 0) and K

(0,1)
2n−1(x, 0) interlace.

The next Lemma shows that the non vanishing zeros of F2n+1 and K
(0,1)
2n−1(x, 0) also interlace.
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Lemma 5. Let {x2n+1,k}2n+1
k=1 and {z2n−1,k}2n−1

k=1 be the set of zeros of F2n+1 and K
(0,1)
2n−1(x, 0), respec-

tively, arranged in increasing order. Then, we have

x2n+1,k < z2n−1,k < x2n+1,k+1, 1 ≤ k ≤ n− 1,

x2n+1,k+1 < z2n−1,k < x2n+1,k+2 n+ 1 ≤ k ≤ 2n− 1.

Proof. Due to the symmetry of both polynomials, it suffices to prove the interlacing for the positive
zeros. Since x2n+1,n+1 = z2n−1,n = 0, we consider the case when n+ 1 ≤ k ≤ 2n− 1. From (12) and the
symmetry of the Freud polynomials, we have

x2K
(0,1)
2n−1(x, 0) =

1

‖F2n−1‖2
(

xF2n(x)F
′
2n−1(0)− F2n−1(x)F2n(0)

)

= xF2n(x)F
′
2n−1(0)−

(

xF2n(x)− F2n+1(x)

a22n

)

F2n(0),

where we have used (4) on the second equality. As a consequence, evaluating the previous equation in
x2n+1,k+1 and x2n+1,k+2 we obtain, respectively,

x22n+1,k+1K
(0,1)
2n−1(x2n+1,k+1, 0) = x2n+1,k+1F2n(x2n+1,k+1)

(

F ′
2n−1(0)−

F2n(0)

a22n

)

,

x22n+1,k+2K
(0,1)
2n−1(x2n+1,k+2, 0) = x2n+1,k+2F2n(x2n+1,k+2)

(

F ′
2n−1(0)−

F2n(0)

a22n

)

.

Since x2n+1,k+1 and x2n+1,k+2 are positive and the zeros of the Freud polynomials interlace, F2n(x2n+1,k+1)

and F2n(x2n+1,k+2) have distinct sign. As a consequence, K
(0,1)
2n−1(x2n+1,k+1, 0) and K

(0,1)
2n−1(x2n+1,k+2, 0)

differ in sign, which means that K
(0,1)
2n−1(x, 0) has a zero between the zeros x2n+1,k+1 and x2n+1,k+2.

Remark 3. Notice that F2n+1 and K
(0,1)
2n−1(x, 0) differ in two degrees. This causes that the zeros interlac-

ing between them is not complete. Indeed, K
(0,1)
2n−1(x, 0) has not zeros in the interval [x2n+1,n, x2n+1,n+2],

i.e. between the origin and the first zeros of F2n+1(x) at both sides.

We will need some results concerning the interlacing properties of the zeros of F2n+1(x), J2n+1(x) and
Q2n+1(x). By symmetry, for the zeros of F2n+1(x), we have x2n+1,n+1 = 0 and x2n+1,k = −x2n+1,2n+2−k

for 1 ≤ k ≤ n. As a consequence, it suffices to analyze the behavior of the positive zeros. In order to
simplify the notation, we denote xk := x2n+1,n+1+k, 1 ≤ k ≤ n, i.e. {xk}nk=1 are the n positive zeros of
F2n+1 arranged in increasing order. A similar notation will be used for the zeros of Q2n+1 and F2n+1.
The following result is a straightforward corollary of Lemma 5.

Corollary 1. Let us denote by {yn,k}nk=1 the set of positive zeros of J2n+1(x) arranged in increasing
order. Then, for 1 ≤ k ≤ n− 1, we have

xk < yk+1 < xk+1, (38)

i.e., positive zeros of J2n+1(x) and F2n+1(x) interlace.

Proof. Taking into account the symmetry and the fact that J ′
2n+1(0) = 0, we deduce that J2n+1(x)

has a zero of multiplicity 3 at the origin. This is, y1 = 0. The result follows by evaluating (37) at two
consecutive zeros xk and xk+1 of F2n+1, for 1 ≤ k ≤ n − 1, and noticing that by Lemma 5, J2n+1(xk)
and J2n+1(xk+1) have different signs.

Remark 4. Observe that due to the triple zero at the origin, J2n+1(x) does not have a zero in the interval
(0, x1), i.e. between the origin and the first positive zero of F2n+1(x). Since F2n+1(x) only has n − 1
positive zeros, we have y1 = 0.

Now, we are ready to enunciate the main result of this Section.
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Theorem 1. On the positive real line, the following interlacing property holds

0 = y1 < η1 < x1 < y2 < η2 < x2 · · · < yk < ηn < xn.

Moreover, each ηk := ηk(M1) is a decreasing function of M1 and, for each k = 1, . . . , n,

lim
M1→∞

ηk(M1) = yk , (39)

as well as

lim
M1→∞

M1[ηk(M1)− yk] =
−F2n+1(yk)

K
(1,1)
2n−1(0, 0)[J

′
2n+1(yk)]

. (40)

Proof. Notice that the polynomials {Q̃2n+1(x)}n≥0 with Q̃2n+1(x) = ρ2n+1Q2n+1(x), can be represented
as

Q̃2n+1(x) = F2n+1(x) +M1K
(1,1)
2n−1 (0, 0) J2n+1 (x) ,

where
ρ2n+1 = 1 +M1K

(1,1)
2n−1 (0, 0) .

Thus, the interlacing follows at once from (38) and Lemma 3. On the other hand, we can write

xq̂n(x
2) = xf̂n(x

2) +M1K
(1,1)
2n−1(0, 0)xĵn(x

2),

with

f̂n = (x− x21) · · · (x− x2n),

q̂n = (x− η21) · · · (x− η2n),

ĵn = (x− y21) · · · (x− y2n),

and by the previous results, their zeros are real, simple and interlace, so they satisfy the conditions on
Lemma 3, and therefore

lim
M1→∞

η2k = y2k,

and

lim
M1→∞

=M1K
(1,1)
2n−1(0, 0)[η

2
k − y2k] = − f̂n(y

2
k)

ĵ′n(y
2
k)

= −2ykF2n+1(yk)

J ′
2n+1(yk)

,

and since η2k − y2k = (ηk + yk)(ηk − yk) and limM1→∞ ηk = yk, the result follows.

Remark 5. Because of the symmetry, the limits (39) and (40) also hold for the negative zeros. The only
difference is that those zeros are increasing functions of M1.

5. Holonomic equation and electrostatic interpretation

In this section, we deduce a second order linear differential equation satisfied by {Qn(x)}n≥0 and,
as an application, an electrostatic interpretation of its zeros is presented. We will use the connection
formula between Qn and Fn, which for convenience will take the form (28). We will also use the structure
formula (5) (for the monic normalization) and the three term recurrence relation (4). Let us rewrite these
formulas as

Qn(x) = An(x)Fn(x) +Bn(x)Fn−1(x), (41)

F ′
n(x) = ϕn(x)Fn(x) + ψn(x)Fn−1(x), (42)

Fn+1(x) = Ωn(x)Fn(x) + Υn(x)Fn−1(x), (43)
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Figure 2: It illustrates the variation of the zeros of an odd degree Freud-Sobolev type polynomials when M1 varies as
described in Theorem 1. The graphs of Q7(x) for three different values of M1 are plotted. The black continuous, dashed,
and dotted lines correspond to M1 = 0.03, M1 = 0.05, and M1 = 0.09, respectively. We also include the graphs of F7(x)
(medium gray color) and J7(x) (light gray color), showing that the zeros of Q7(x) are increasing functions of M1 in the
negative real semiaxis, traveling from the negative zeros of F7(x) to the corresponding zeros of J7(x) as M1 increases.
Likewise, the positive zeros of Q7(x) are decreasing functions of M1, traveling from the positive zero of F7(x) to the
corresponding zero of J7(x) according with Theorem 1. Observe that in this picture, the value of M0 is irrelevant.

where the coefficients above are given according to (28), (5) and (4), respectively, i.e.,

An(x) = 1− rn
4x2φn(0)

κ[1]n , Bn(x) =
a2n
x

(

κ[0]n +κ[1]n

)

,

ϕn(x) = −4xa2n , ψn(x) = 4a2nφn(x),

Ωn(x) = x, Υn(x) = −a2n .

Before stating our main result in this section, we need the following Lemmas.

Lemma 6. The monic sequences {Qn(x)}n≥0 and {Fn(x)}n≥0 satisfy

Q′
n(x) = C1(x;n)Fn(x) +D1(x;n)Fn−1(x) (44)

where

C1(x;n) = A′
n(x) +An(x)ϕn(x) +Bn(x)

ψn−1(x)

Υn−1(x)
, (45)

D1(x;n) = B′
n(x) +An(x)ψn(x) +Bn(x)

(

ϕn−1(x)−
Ωn−1(x)

Υn−1(x)

)

.

Proof. Combining (42) and (43) we have

F ′
n−1(x) =

ψn−1(x)

Υn−1(x)
Fn(x) +

(

ϕn−1(x)−
Ωn−1(x)

Υn−1(x)

)

Fn−1(x).

The result follows by replacing the last equation and (42) into the derivative with respect to x of (41).

Lemma 7. The sequences of monic polynomials {Qn(x)}n≥0 and {Fn(x)}n≥0 are also related by

Qn−1(x) = A2(x;n)Fn(x) +B2(x;n)Fn−1(x), (46)

Q′
n−1(x) = C2(x;n)Fn(x) +D2(x;n)Fn−1(x), (47)

16



where

A2(x;n) =
Bn−1(x)

Υn−1(x)
, B2(x;n) = An−1(x)−Bn−1(x)

Ωn−1(x)

Υn−1(x)
,

C2(x;n) =
D1(x;n− 1)

Υn−1(x)
, D2(x;n) = C1(x;n− 1)−D1(x;n− 1)

Ωn−1(x)

Υn−1(x)
.

The coefficients C1(x;n− 1) and D1(x;n− 1) are given in (45).

Proof. The expressions follow from (41) and (44), respectively, after a shift in the degree, and using (43)
to express both of them in terms of Fn and Fn−1.

Lemma 8. The following ”inverse connection” formulas hold.

Fn(x) =
B2(x;n)

Λ(x;n)
Qn(x)−

Bn(x)

Λ(x;n)
Qn−1(x), (48)

Fn−1(x) =
−A2(x;n)

Λ(x;n)
Qn(x) +

An(x)

Λ(x;n)
Qn−1(x), (49)

where
Λ(x;n) = An(x)B2(x;n)−A2(x;n)Bn(x).

Proof. The result follows by solving the linear system defined by (41) and (46).
Now, we replace (48) and (49) in (44) and (47), respectively, to obtain the ladder equations

Q′
n(x) =

[

C1(x;n)B2(x;n)

Λ(x;n)
− D1(x;n)A2(x;n)

Λ(x;n)

]

Qn(x)

+

[

An(x)D1(x;n)

Λ(x;n)
− C1(x;n)Bn(x)

Λ(x;n)

]

Qn−1(x),

Q′
n−1(x) =

[

C2(x;n)B2(x;n)

Λ(x;n)
− A2(x;n)D2(x;n)

Λ(x;n)

]

Qn(x)

+

[

An(x)D2(x;n)

Λ(x;n)
− C2(x;n)Bn(x)

Λ(x;n)

]

Qn−1(x),

which can be written in the more compact way

(Ξ(x;n, 2)I −Dx)Qn(x) = Ξ(x;n, 1)Qn−1(x),

(Θ(x;n, 1)I +Dx)Qn−1(x) = Θ(x;n, 2)Qn(x),

where I and Dx are the identity and x-derivative operators, respectively, by defining the determinants

Ξ(x;n, k) =
1

Λ(x;n)

∣

∣

∣

∣

C1(x;n) Ak(x;n)
D1(x;n) Bk(x;n)

∣

∣

∣

∣

, (50)

Θ(x;n, k) =
1

Λ(x;n)

∣

∣

∣

∣

C2(x;n) Ak(x;n)
D2(x;n) Bk(x;n)

∣

∣

∣

∣

, (51)

for k = 1, 2, where A1(x;n) := An(x) and B1(x;n) := Bn(x). As a consequence, we have the following
result.

Theorem 2. Let bn and b†n be the differential operators

bn = Ξ(x;n, 2)I −Dx,

b†n = Θ(x;n, 1)I +Dx.

Then,

bn[Qn(x)] = Ξ(x;n, 1)Qn−1(x),

b†n[Qn−1(x)] = Θ(x;n, 2)Qn(x),

where Ξ(x;n, k) and Θ(x;n, k) are given in (50) and (51), respectively.
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Finally, we state the main result of this section.

Theorem 3. The Sobolev-Freud type polynomials {Qn(x)}n≥0 satisfy the second order linear differential
equation

Q′′
n(x) +R(x;n)Q′

n(x) + S(x;n)Qn(x) = 0, (52)

where

R(x;n) = Θ(x;n, 1)− Ξ(x;n, 2)− [Ξ(x;n, 1)]′

Ξ(x;n, 1)
,

S(x;n) = Ξ(x;n, 2)

[

[Ξ(x;n, 1)]′

Ξ(x;n, 1)
−Θ(x;n, 1)

]

− [Ξ(x;n, 2)]′.

Proof. The result follows in a straightforward way from the ladder operators provided in Theorem 2.
The usual technique (see, for example [14, Th. 3.2.3]) consists in applying the raising operator to both
sides of the equation satisfied by the lowering operator, i.e.

b†n

[

1

Ξ(x;n, 1)
bn[Qn(x)]

]

= b†n[Qn−1(x)] = Θ(x;n, 2)Qn(x),

and then using the definition b†n to compute the left hand side. After some computations, (52) follows.

We point out that we have obtained a second order linear differential equation for the complete
sequence {Qn(x)}n≥0. However, as we have mentioned in the previous sections, the even and odd degree
polynomials behave differently. Indeed, they have another connection formula, and the previous results
hold in either case just by taking the coefficients of the connection formula (41) accordingly. Using
Mathematicar, the expression for R(x;n) was obtained according to Theorem 3. In the sequel, we

provide the expressions for the odd case (κ
[0]
n = 0, κ

[1]
2n = 0, r2n+1 = 1, r2n = 0), together with an

electrostatic interpretation of the zeros of {Qn(x)}n≥0. The even case was analyzed in [3] and [13]. We
found

R(x; 2n+ 1) =
2

x
− 4x3 − u′(x; 2n+ 1)

u(x; 2n+ 1)
,

where u(x; 2n+ 1) is the biquartic polynomial

u(x; 2n+ 1) = u4(n)x
4 + u2(n)x

2 + u0(n) (53)

with

u4(n) = 16φ22n+1(0)[1 + κ
[1]
2n+1],

u2(n) = 4φ2n+1(0)
[

4φ22n+1(0) + κ
[1]
2n+1(2 + κ

[1]
2n+1)(4a

2
2n+1φ2n+1(0)− 1)

]

,

u0(n) = κ
[1]
2n+1

[

−12φ22n+1(0) + κ
[1]
2n+1

{

1 + 8a22n+1φ2n+1(0) [−1 + 2φ2n(0)φ2n+1(0)]
}

]

.

Now, the evaluation of (52) at the zeros {y2n+1,k}2n+1
k=1 of Q2n+1(x) which are different from zero , i.e. if

they are listed in an increasing order we will have y2n+1,n+1 = 0, yields

Q′′
2n+1(y2n+1,k)

Q′
2n+1(y2n+1,k)

= −R(y2n+1,k; 2n+ 1) = − 2

y2n+1,k
+ 4(y2n+1,k)

3 +
u′(y2n+1,k; 2n+ 1)

u(y2n+1,k; 2n+ 1)
.

The above equation represents the electrostatic equilibrium condition for the 2n zeros {y2n+1,k}2n+1
k=1 of

Q2n+1, k 6= n+ 1, and can be rewritten as (see [14] and [17])

2n+1
∑

j=1,j 6=k,n+1

1

y2n+1,j − y2n+1,k
+
u′(y2n+1,k; 2n+ 1)

2u(y2n+1,k; 2n+ 1)
− 2

y2n+1,k
+ 2(y2n+1,k)

3 = 0,

for k = 1, . . . , 2n+ 1, k 6= n+ 1. Therefore, the zeros of Q2n+1(x) are critical points of the total energy.
Thus, the electrostatic interpretation of the distribution of the 2n zeros different from the y2n+1,n+1 = 0,
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since it remains fixed, means that we have an equilibrium position under the action of the external
potential

Vext(x, 2n+ 1) =
1

2
lnu(x; 2n+ 1)− 1

2
lnx4e−x4

,

where the first term represents a short range potential which corresponds to unit charges located at the
four zeros of u(x; 2n + 1), and the second term is a long range potential associated with a Christoffel
perturbation of the Freud weight function.

If z+(n) and z−(n) are the solutions of the associated quadratic equation

u4(n) z
2 + u2(n) z + u0(n) = 0,

then the zeros of (53) are

x1(n) = +
√
z+(n), x2(n) = −√

z+(n), x3(n) = +
√
z−(n), x4(n) = −√

z−(n).

M = 0.1 M = 1 M = 10

±√
z1 ±√

z2 ±√
z1 ±√

z2 ±√
z1 ±√

z2

n = 1 ± 0.369164 ± 0.878731 i ± 0.745497 ± 0.914759 i ± 0.905303 ± 0.928589 i

n = 3 ± 0.397067 ± 1.059517 i ± 0.387740 ± 1.089036 i ± 0.159258 ± 1.106825 i

n = 5 ± 0.329766 ± 1.181451 i ± 0.197206 ± 1.197172 i ± 0.068685 ± 1.201241 i

n = 7 ± 0.251172 ± 1.272375 i ± 0.116257 ± 1.279623 i ± 0.038576 ± 1.280856 i

n = 9 ± 0.189032 ± 1.345977 i ± 0.076318 ± 1.349456 i ± 0.024825 ± 1.349937 i

n = 11 ± 0.144418 ± 1.408813 i ± 0.053943 ± 1.410616 i ± 0.017374 ± 1.410839 i

n = 13 ± 0.112816 ± 1.464184 i ± 0.040222 ± 1.465192 i ± 0.012969 ± 1.465308 i

n = 15 ± 0.089745 ± 1.513969 i ± 0.029902 ± 1.514571 i ± 0.004691 ± 1.514637 i

n = 17 ± 0.073204 ± 1.559345 i ± 0.024134 ± 1.559723 i ± 0.005169 ± 1.559764 i

n = 19 ± 0.060787 ± 1.601140 i ± 0.019950 ± 1.601389 i ± 0.005144 ± 1.601416 i

Table 3: Zeros of u(x; 2n+ 1) for several values of M1 and odd values of n.

Table 3 shows the zeros of u(x; 2n + 1) for some fixed values of M1 and several values of n. With
just a little more effort, we can describe the asymptotic behavior with n of these four zeros. Combining
(8) with (5) and (6) it is possible to obtain the asymptotic behavior for n large enough of the kernels
(13)-(14). Using this information, and (7), after some tedious but straightforward computations, the
asymptotic behavior of the three coefficients yields

u4(n) =
32

3
n

(

1 +
15

8n
+O(n−2)

)

,

u2(n) = 8
√
6n1/2

(

1 +
4n

9
+O(n−1)

)

,

u0(n) =
−9

2

(

1 +
9

8n
+O(n−2)

)

.

Then, the asymptotic behavior of the aforementioned z+ and z− is

z+(n) =
27

64

√

3

2

1

n3/2
− 243

512

√

3

2

1

n5/2
+O(n−7/2),

z−(n) = −
√

2

3

1

n1/2
− 1

4

√

3

2

1

n5/2
+O(n−7/2)

The above shows that, as n goes to infinity, z+(n) remains positive and z−(n) negative, so u(x; 2n + 1)
will always have two symmetric real zeros x1, x2 = ±√

z+(n) , and two extra simple conjugate pure
imaginary zeros x3, x4 = ±√

z−(n).
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Figure 3: Zeros of u(x; 2n+ 1) for M1 = 1 and odd values of n, from 1 to 19.
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at the Universidad de Alcalá in early 2017, under the “GINER DE LOS RIOS” research program. Both
authors wish to thank the Departamento de F́ısica y Matemáticas de la Universidad de Alcalá for its
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