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Abstract. We consider the sequences of matrix bi-orthogonal polynomials with
respect to the bilinear forms 〈·, ·〉R̂ and 〈·, ·〉L̂

〈P(z1),Q(z2)〉R̂ =
∫
T×T

P(z1)†L(z1)dµ(z1, z2)Q(z2),
P,Q ∈ Lp×p[z]

〈P(z1),Q(z2)〉L̂ =
∫
T×T

P(z1)L(z1)dµ(z1, z2)Q(z2)†,

where µ(z1, z2) is a matrix of bi-variate measures supported on T × T, with T the
unit circle, Lp×p[z] is the set of matrix Laurent polynomials of size p× p and L(z)
is a special polynomial in Lp×p[z] . A connection formula between the sequences
of matrix Laurent bi-orthogonal polynomials with respect to 〈·, ·〉R̂, (resp. 〈·, ·〉L̂)
and the sequence of matrix Laurent bi-orthogonal polynomials with respect to
dµ(z1, z2) is given.
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1. Introduction
Perturbations of a linear functional supported on an infinite subset of the real line
(see for example [10, 20, 24, 25, 34, 50, 48]) and the unit circle (see for example
[16, 17, 30, 31, 35] and the references therein) have been extensively studied in the
literature, in particular when these linear functionals are positive definite since they
have an integral representation [19, 46]. More precisely, there are three perturba-
tions that have historically highlighted, the so called Christoffel [20], Geronimus
[34] and Uvarov [48, 49] transformations. Later on, in [51] Zhedanov stressed the
importance of the first two to show that every spectral linear transformation of a
linear functional supported on the real line can be written as finite superposition of
Christoffel and Geronimus transformations.
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The Christoffel and Geronimus transformations have been studied from different
points of view. For example in [10] M. Bueno and F. Marcellán analyzed the rela-
tion between the semi-infinite matrices associated with the multiplication operator
by x (Jacobi matrices) of the original and the perturbed (Christoffel or Geronimus)
linear functional finding an important relation between them by using LU and UL
factorization, respectively, as well as QR factorization (see [11, 12]). On the other
hand, in [20, 34, 49, 50] the relation between the original and perturbed monic or-
thogonal polynomials is given in terms of a determinantal formula. In [50] the author
combined these two methods in such a way a relation between perturbation of linear
functionals, factorization of Jacobi matrices and relation between the corresponding
orthogonal polynomials is deduced. Returning to the Jacobi matrix, recall that since
its tridiagonal shape, it plays a crucial role in the study of the zeros of orthogonal
polynomials taking into account they are the eigenvalues of their leading principal
submatrices. However, the situation for linear functionals supported on the unit cir-
cle is rather more complicated that in the real line because the semi-infinite matrix
associated with the multiplication operator by z in terms of a basis of orthogonal
polynomials is not a band matrix but an irreducible Hessenberg one. This is a con-
sequence of the fact that the multiplication operator by z is not symmetric for the
bilinear form associated with the linear functional. The above problem was solved
by Cantero, Moral and Velázquez in [15], where they obtain a new orthonormal ba-
sis (χn(z))n∈N (the Laurent orthogonal polynomial basis or CMV basis) as a result
of the Gram-Schmidt orthonormal process applied to the basis {1, z, z−1, . . .} of the
linear space of Laurent polynomials. This new basis satisfies a five term recurrence
relation, or, equivalently, there exists a unitary semi-infinite five diagonal band ma-
trix C such that zχ(z) = Cχ(z), where χ(z) = (χ0(z), χ1(z) · · · )>. C is known in the
literature as CMV matrix. As an application, in [5] the theory of orthogonal Lau-
rent polynomials on the unit circle and the theory of Toda-like integrable systems
using the Gauss–Borel factorization of a CMV moment matrix, constructed from a
complex quasi-definite measure supported on the unit circle, is studied.

Recently, Cantero, Marcellán, Moral and Velázquez [14] presented an approach to
the Darboux transformations for CMV matrices. In particular, for the Christoffel
transformation they show that given a Hermitian polynomial L(z), a linear func-
tional µ (supported on the unit circle) and the perturbed one µ̂ = L(z)µ, if L(C) has
Cholesky factorization L(C) = AA†, then L(Ĉ) = A†A, where C and Ĉ are the CMV
matrices associated with µ and µ̂, respectively.

On the other hand, in [38] the authors deal with a measure supported on the unit
circle multiplied by a non-negative trigonometric polynomial g(θ). Using the fact
that for g(θ) there exists a positive integer number m ∈ N and a polynomial G2m(z)
of degree 2m such that g(θ) = z−mG2m(z), they give a determinantal expression for
the perturbed monic orthogonal polynomial of degree n multiplied by G2m(z). In this
expression, the original orthogonal polynomials, from degree n until degree n + m,
their corresponding reversed polynomials (see Eq. (1)) as well as the zeros of the
polynomial G2m(z), are involved.
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Concerning the theory of matrix orthogonal polynomials and their applications (see
for example [13, 37, 47]), there is an exhaustive bibliography focused on matrix
bilinear forms as well as the existence of the corresponding sequences of matrix
bi-orthogonal polynomials, both in the real line [43, 45, 47] and in the unit cir-
cle [22, 23, 26, 33, 44, 47]. In [4, 27, 28] the authors studied sequences of matrix
orthogonal polynomials which are eigenfunctions of a second order linear matrix
differential operator (right-hand and left-hand side) with polynomial matrices as co-
efficients. Moreover in [18], M. Castro and F. Grünbaum showed that there exist
sequences of matrix orthogonal polynomials satisfying a first order linear matrix
differential equation with polynomial matrices as coefficients, a situation that does
not appear in the scalar case. Concerning spectral transformations, in [24, 25] the
authors show that all multiple Geronimus transformations of a measure supported
on the real line yield a simple Geronimus transformation for a matrix of measures.
More recently, in [1, 2, 3] the authors have done a complete study of spectral trans-
formations for matrix sesquilinear forms supported on an infinite set of the real line,
and the corresponding connection formulas (Christoffel type formulas) between the
bi-orthogonal sequences of original and perturbed bilinear forms. These connection
formulas are given in terms of quasi-determinants [32]. Here, we will use similar
techniques to find formulas for the Christoffel transformations for matrix Laurent
polynomials. Finally, the connection between orthogonal polynomials with respect
to measures supported on lemniscates and harmonic algebraic curves, respectively,
and matrix orthogonal polynomials with respect to a matrix of measures supported
on the unit and the real line has been pointed out in [39] and [40], respectively.

Returning to the scalar case, if we take v ∈ (L[x, y])′ (the algebraic dual of the set of
Laurent polynomials of two variables), then we can consider the following bilinear
form 〈p(z1), q(z2)〉 :=

〈
v, p(z1) ⊗ q(z2)

〉
, where ⊗ is the tensor product. In particular,

if v is associated with a bi-variate complex measure dµ(z1, z2), then

〈p(z1), q(z2)〉 =
〈
v, p(z1) ⊗ q(z2)

〉
=

∫ ∫
p(z1)q(z2) dµ(z1, z2).

Taking into account the above discussion, if µ is now a matrix of bi-variate complex
measures supported on T × T

dµ(z1, z2) :=


du1,1(z1, z2) · · · du1,p(z1, z2)

...
...

dup,1(z1, z2) · · · dup,p(z1, z2)

 ,
then we can define the following matrix bilinear forms 〈·, ·〉R and 〈·, ·〉L from their
entries (see also (5) and (6))

(〈P(z1),Q(z2)〉R)i, j :=
p∑

m,l=1

∫
T×T

(P(z1))l,i(Q(z2))m, jdul,m(z1, z2),

(〈P(z1),Q(z2)〉L)i, j :=
p∑

m,l=1

∫
T×T

(P(z1))i,l(Q(z2)) j,mdul,m(z1, z2),
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with P(z),Q(z) ∈ Lp×p[z].
In this contribution we focus our attention on the study of matrix Christoffel trans-
formations for a matrix of measures supported on the bi-circle, i. e. given a matrix
of measures dµ(z1, z2) supported on T × T and a matrix prepared Laurent polyno-
mial L(z) (see Definition 1), we are interested in dealing with the following bilinear
forms

〈P(z1),Q(z2)〉R̂ =
∫
T×T

P(z1)†L(z1)dµ(z1, z2)Q(z2),
P,Q ∈ Lp×p[z],

〈P(z1),Q(z2)〉L̂ =
∫
T×T

P(z1)L(z1)dµ(z1, z2)Q(z2)†.

Here, † means the conjugate transpose of a matrix.

The structure of the manuscript is as follows. In Section 2 the basic background
about matrix polynomials and matrix Laurent polynomials is presented. Section
3 deals with matrix bi-orthogonal Laurent polynomials and its relation with the
Gauss-Borel factorization. In Section 4, the Christoffel transformation of a matrix
of bi-variate measures is considered. Connection formulas for their corresponding
sequences of matrix bi-orthogonal Laurent polynomials as well as for the matrix
kernel polynomials are obtained.

2. Preliminaries
First of all we will fix some notation. Let C and Z be the set of complex and integer
numbers, respectively, and denote by Cp×p the linear space of p × p matrices with
complex entries. T := {z ∈ C : |z| = 1} will denote the unit circle. For an arbitrary
finite or infinite matrix A, A> is the transpose of the matrix A, and A† = Ā>. When
A = (αi, j)i, j=0 is a (finite or semi-infinite) block square matrix with αi, j ∈ C

p×p,
A[n] := (αi, j)n−1

i, j=0 means the principal leading p× p block sub-matrix of A of order n.
Given matrices A ∈ Cm×m, B ∈ Cp×m, C ∈ Cm×p and D ∈ Cp×p, we denote the last
quasi-determinant (or Schur complement) of the block matrix

( A B
C D

)
, as

Θ∗

[
A B
C D

]
:= D −CA−1B.

This is a very instrumental approach, as we do not want to go into details to quasi-
determinants, however we stress that the theory goes beyond this introduction (see
[32]). For a deeper discussion of the use of quasi-determinants within orthogonal
polynomials see the recent paper [8].

The product AB of two semi-infinite matrices A and B is said to be admissible if any
matrix entry (AB)i, j =

∑
k Ai,kBk, j involves only a finite number of non-null terms.

As in the finite case, the product of semi-infinite matrices satisfies the distributive
law A(B + C) = AB + BC when the products AB and BC are admissible. Besides,
if AB is admissible, then (AB)† is also admissible and (AB)† = B†A†. However, the
associative law can fail even if all the involved matrix products are admissible [14].

Proposition 1 ([14, 21]). Let A, B and C be semi-infinite matrices. The associative
property (AB)C = A(BC) is valid in any of the following cases
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i) A and B are lower Hessenberg type.
ii) B and C are upper Hessenberg type.

iii) A is lower Hessenberg type and B is upper Hessenberg type.

Corollary 1 ([21]). If A is either a lower or upper triangular block matrix such
that the blocks of its main diagonal are nonsingular matrices, then A has a unique
inverse.

Remark 1. In this manuscript we always deal with Hessenberg block matrices or
matrices that can be factorized in terms of them. Thus, when we need to use the
associative law of the product, and the hypothesis of Proposition 1 will be satisfied,
we will forget the associativity parenthesis.

Recall that for any matrices Ak ∈ C
p×p, k = 0, . . . , n, with An non-sigular, the matrix

P(z) = Anzn + An−1zn−1 + · · ·+ A1z+ A0 is said to be a matrix polynomial of degree n.
In particular, if An = Ip, the identity p × p matrix, then the polynomial is said to be
monic. The set of matrix polynomials with coefficients in Cp×p will be denoted by
Cp×p[z]. y0 ∈ C is said to be a zero of P(z) if det

[
P(y0)

]
= 0. Clearly, from the above

definition, P(z) has at most np zeros. If deg(P) = n, then the reversed polynomial of
P(z) is defined as

(P(z))∗ := zn(P(1/z̄))†. (1)

Definition 1. Given a family of matrices (Ak)n
k=m with m, n ∈ Z and m 6 n, the

matrix L(z) =
∑n

k=m Akzk is said to be a Laurent matrix polynomial. The set of matrix
Laurent polynomials will be denoted by Lp×p[z]. In particular, if L(z) ∈ Lp×p[z] has
the form

L(z) =

d∑
k=−d

Akzk, A−d, Ad , 0p×p,

with A†k = A−k, k = 0, . . . , d, then it is said to be a matrix prepared Laurent polyno-
mial of "degree" d.

In the context of orthogonal polynomials, the definition of prepared Laurent poly-
nomial was originated in [9], where they received the name of nice polynomials.
In [9] one can find a study of perturbations of complex multivariate measures by
multiplication with multivariate Laurent polynomials in the algebraic torus, and the
corresponding Christoffel formulas were deduced. In [7] a similar study for scalar
Laurent polynomial type perturbations of bi-variate linear functionals was given.
Here the name of prepared polynomial appears at first time. We stress that in other
frameworks as signal preprocessing or control theory, the prepared Laurent polyno-
mials are known as parahermitian (or Para-Hermitian) polynomials [29, 42].
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Given the basis η(z) := (Ip, zIp, z−1Ip, z2Ip, z−2Ip · · · )> in the bi-module of matrix
Laurent polynomials Lp×p[z], the semi-infinite matrix

T :=



0 Ip

0 0
0 0
0 Ip

Ip 0
0 0

0 0
0 0

0 0
0 Ip

0 0
· · · · · ·

Ip 0
· · · · · ·

0 0
· · · · · ·

. . .

. . .


(2)

represents the shift operator zn 7→ zn+1 with respect to the basis η(z), i.e. Tη(z) =

zη(z) where T is a unitary matrix TT † = T †T = I. Here I denote the semi-infinite
identity matrix 1.
Since we need some basic tools of the spectral theory of matrix polynomials, we
will define the concept of Canonical Jordan Chain (this generalizes the concept of
Jordan chain for matrix polynomials of degree 1 [36, 41]). For this aim, we translate
here some of the constructions presented in [1, 2].
Given W(z) ∈ Cp×p[z], a monic matrix polynomial of degree N, let y1, . . . , yq, be
its zeros and let α1, . . . , αq be their corresponding multiplicities. Since W(z) is a
monic polynomial,

∑q
i=1 αi = N p. If for the zero yi there exists a nonzero vector r(i)

0

(resp. l(i)0 ) such that

W(yi)r
(i)
0 = 0p, (resp. l(i)0 W(yi) = 0>p ), where 0p =


0
...
0


1×p

,

then r(i)
0 (resp. l(i)0 ) is said to be a right (resp. left) eigenvector of W(z) associated

with yi. A sequence of vectors {r(i)
0 , r

(i)
1 . . . , r(i)

mi−1} (resp. {l(i)0 , l
(i)
1 . . . , l(i)mi−1}) is said to

be a right (resp. left) Jordan chain of length mi associated with yi if r(i)
0 (resp.l(i)0 ) is

a right (resp. left) eigenvector of W(z) corresponding to yi and

j∑
k=0

1
k!

W (k)(yi)r
(i)
j−k = 0p, (resp.

j∑
k=0

1
k!

l(i)j−kW (k)(yi) = 0>p ), j = 0, . . . ,mi − 1.

A right (resp. left) Jordan chain {r(i)
0 , r

(i)
1 . . . , r(i)

ki−1} (resp. {l(i)0 , l
(i)
1 . . . , l(i)κi−1}) is said to

be of maximal length ki if there does not an other one with length κi+1. The maximal
length of a Jordan chain corresponding to the zero yi is called the multiplicity of
right (resp. left) eigenvector r(i)

0 (resp. l(i)0 ) and is denoted by m(r(i)
0 ) (resp. m(l(i)0 )). In

the sequel we will only deal with Jordan chains of maximal length. In general we
can assume that m(r(i)

0 ) = m(l(i)0 ) taking into account the following proposition (see
[36]).

1Notice that for the matrix polynomial basis {Ip, zIp, z2Ip, . . .} the multiplication operator by z is not
unitary.
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Proposition 2. Given a zero yi of W(z), there exists a right eigenvector r(i)
0 as-

sociated with yi and multiplicity κ(i) if and only if there exists a left eigenvector l(i)0
associated with yi and multiplicity κ(i).

Thus, given a basis {r(i)
1,0, . . . , r

(i)
si,0
} of the linear subspace Ker(W(yi)) and {l(i)1,0, . . . , l

(i)
si,0
}

a basis of the linear subspace CoKer(W(yi)) with

dim(Ker(W(yi))) = dim(CoKer(W(yi))) = si,

a right (resp. left) canonical Jordan chain associated with the zero yi is defined as a
system of right (resp. left) Jordan chains with maximal length

r(i)
j,0, r

(i)
j,1, · · · , r

(i)
j,κ(i)

j −1,
, (resp. l(i)j,0, l

(i)
j,1, · · · , l

(i)
j,κ(i)

j −1,
) j = 1, . . . , si.

The number m(yi,W(z)) :=
∑si

j=1 κ
(i)
j is said to be the Jordan multiplicity of yi. The

following result, that is a direct consequence of Proposition 1.13 of [36] (see also
[41]), will be a main tool in the sequel.

Proposition 3. Let yi be a zero of W(z) with multiplicity αi. If

r(i)
j,0, r

(i)
j,1, · · · , r

(i)
j,κ(i)

j −1
(resp. l(i)j,0, l

(i)
j,1, · · · , l

(i)
j,κ(i)

j −1
), j = 1, . . . si, (3)

is a right (resp. left) canonical Jordan chain corresponding to yi, then m(yi,W(z)) = αi.

Definition 2. Given a right (left) canonical Jordan chain as in (3) corresponding
to yi, for each j = 1, . . . , si, we define the following right (resp. left) root vector
polynomials

r(i)
j (z) =

κ(i)
j −1∑
t=0

(z − yi)tr(i)
j,t (resp. l(i)j (z) =

κ(i)
j −1∑
t=0

(z − yi)tl(i)j,t). (4)

Proposition 4. Given the monic matrix polynomial W(z), the right (resp. left) root
vector polynomials introduced above (see (4)) satisfy

dt

d zt

∣∣∣∣
z=yi

(
W(z)r(i)

j (z)
)

= 0p (resp.
dt

d zt

∣∣∣∣
z=yi

(
l(i)j (z)W(z) = 0>p

)
),

where t = 0, . . . , κ(i)
j − 1, j = 1 . . . , si.

Definition 3. Let yi be a zero of W(z) and let r(i)
j (z) and l(i)j (z), 1 ≤ j ≤ si, be its

associated right and left root vector polynomial defined as above. Given a matrix
function f (z) which is smooth in its domain of definition, we consider its matrix
spectral jets

Jr,( j)
f (yi) :=

 f (yi)r
(i)
j (yi), . . . ,

( f (z)r(i)
j (z))

(κ(i)
j −1)

yi

(κ(i)
j − 1)!

 ∈ Cp×κ(i)
j ,

Jr
f (yi) :=

[
Jr,(1)

f (yi) . . . , J
r,(si)
f (yi)

]
∈ Cp×αi ,

Jr
f :=

[
Jr

f (y1), . . . , Jr
f (yq)

]
∈ Cp×N p,
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Jl,( j)
f (yi) :=


l(i)j (yi) f (yi)

...

(l(i)j (z) f (z))
(κ(i)j −1)
yi

(κ(i)
j −1)!

 ∈ C
κ(i)

j ×p, Jl
f (yi) :=


Jl,(1)

f (yi)
...

Jl,(si)
f (yi)

 ∈ Cαi×p,

Jl
f :=


Jl

f (y1)
...

Jl
f (yq)

 ∈ CN p×p.

In particular, if f (z) and g(z) are matrix polynomials with f (z) =
∑m

k=0 B jz j, then

Jr,( j)
f (yi) =

m∑
k=0

B jJ
r,( j)
zk (yi), Jl,( j)

f (yi) =

m∑
k=0

Jl,( j)
zk (yi)B j,

and
Jr,( j)

f +g(yi) = Jr,( j)
f (yi) + Jr,( j)

g (yi), Jl,( j)
f +g(yi) = Jl,( j)

f (yi) + Jr,( j)
g (yi).

3. Matrix Orthogonal Laurent polynomials
In this section, for the reader’s commodity, we recall the material we will need in the
sequel from [6]. Given a bi-variate matrix of measures (not necessarily Hermitian)
dµ(z1, z2) supported on T × T, we can define the bilinear forms on the bi-module of
matrix Laurent polynomials,

〈·, ·〉L , 〈·, ·〉R : Lp×p[z] × Lp×p[z] −→ Cp×p

as follows

〈 f (z1), g(z2)〉R =

∫
T×T

f (z1)†dµ(z1, z2)g(z2), (5)

〈 f (z1), g(z2)〉L =

∫
T×T

f (z1)dµ(z1, z2)g(z2)†. (6)

They are related by 〈
f †(z1), g†(z2)

〉
L

= 〈 f (z1), g(z2)〉R . (7)

In [6] the authors constructed a new sequence of matrix bi-orthogonal Laurent poly-
nomials for (6) from the basis

ε(z) = (Ip, z−1Ip, zIp, z−2Ip, z2Ip · · · )>

that constitutes an analog of the one analyzed in [15] (see also [14]) for the scalar
case. In a similar way, under certain hypotheses (see below), we can construct se-
quences of matrix bi-orthogonal Laurent polynomials (χ@[1]

n (z1), χ@[2]
n (z2))n∈N, @ =

R, L, for (6) from the canonical basis,

η(z) := (Ip, zIp, z−1Ip, z2Ip, z−2Ip · · · )>. (8)

Such bi-orthogonal Laurent polynomials must satisfy, for i = 1, 2, and @ = R, L,

χ@[i]
n (z) ∈

Span{z−kIp · · · zkIp} (coefficient of z−kIP = Ip), n = 2k,
Span{z−kIp · · · zk+1Ip} (coefficient of zk+1Ip = Ip), n = 2k + 1,

(9)
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and 〈
χR[1]

m (z1), χR[2]
n (z2)

〉
R

= δn,mDR
n ,

〈
χL[1]

m (z1), χL[2]
n (z2)

〉
L

= δm,nDL
n , (10)

with DR
n ,D

L
n nonsingular matrices. The sequence (χ@[i]

n )n∈N, i = 1, 2, and @ = R, L,
is said to be a zig-zag basis. One can characterize these zig-zag bases, but first we
give the following definition

Definition 4. The semi-infinite matrices ML and MR

MR =

∫
T×T

(η(z1)>)†dµ(z1, z2) η(z2)> =
〈
η(z1)>, η(z2)>

〉
R
,

ML =

∫
T×T

η(z1)dµ(z1, z2) η(z2)† = 〈η(z1), η(z2)〉L ,

are said to be the Gram moment matrices with respect to the basis η(z).

For our purposes, we assume that the bilinear form 〈·, ·〉R (resp. 〈·, ·〉L) is quasi-
definite, this is equivalently to det(MR)[n] , 0, ( resp. det(ML)[n] , 0) for every
n ∈ N. Under this assumption, there exists a block Gauss-Borel factorization for the
matrix MR (resp ML) [6], i.e.

MR = S −1
1 DRS −1

2 , ML = Z−1
1 DLZ−1

2 ,

where S 1,Z1 and S 2,Z2 are lower and upper triangular block matrices, respectively,
with blocks Ip in their main diagonal, and DR,DL are non-singular diagonal block
matrices. Let us define the block vectors

χR[i](z) :=
(
χR[i]

0 (z) χR[i]
1 (z) · · ·

)
, χ[i](z) =


χL[i]

0 (z)
χL[i]

1 (z)
...

 , i = 1, 2,

as
χR[1](z) := η(z)>S †1, χR[2](z) := η(z)>S 2, (11)

χL[1](z) := Z1η(z), χL[2](z) := Z†2η(z).

We will see that they satisfy (9) and (10).

Proposition 5. The sequences (χ@[1]
n (z1), χ@[2]

n (z2))n∈N are bi-orthogonal with re-
spect to 〈·, ·〉@ , @ = L,R. Moreover〈

χ@[1]
n (z1), χ@[2]

n (z2)
〉

@
= D@

n .

Proof. The proof of the above statement is equivalent to prove that〈
χR[1](z1), χR[2](z2)

〉
R

= DR,
〈
χL[1](z1), χL[2](z2)

〉
L

= DL.

But, from (11), we get〈
χR[1](z1), χR[2](z2)

〉
R

=
〈
η(z1)>S †1, η(z2)>S 2

〉
R

=

∫
T×T

S 1η(z1)dµ(z1, z2) η(z2)>S 2

= S 1

〈
η(z1)>, η(z2)>

〉
S 2 = DR.

For (χL[1]
n (z1), χL[2]

n (z2))n∈N the proof is similar. �
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Remark 2. The bi-orthogonality of (χ@[1]
n (z1), χ@[2]

n (z2))n∈N is equivalent to〈
χ@[1]

2k (z1), z j
2Ip

〉
@

= 0p×p for − k + 1 ≤ j ≤ k, and
〈
χ@[1]

2k (z1), z−k
2 Ip

〉
@

= D@
2k,〈

z j
1Ip, χ

@[2]
2k (z2)

〉
@

= 0p×p for − k + 1 ≤ j ≤ k, and
〈
z−k

1 Ip, χ
@[2]
2k (z2)

〉
@

= D@
2k,

and〈
χ@[1]

2k+1(z1), z j
2Ip

〉
@

= 0p×p for − k ≤ j ≤ k, and
〈
χ@[1]

2k+1(z1), zk+1
2 Ip

〉
@

= D@
2k+1,〈

z j
1Ip, χ

@[2]
2k+1(z2)

〉
@

= 0p×p for − k ≤ j ≤ k, and
〈
zk+1

1 Ip, χ
@[2]
2k+1(z2)

〉
@

= D@
2k+1,

where D@
2k, D@

2k+1 are nonsingular matrices. Here @ = R, L.

Definition 5. The sequences of matrix Laurent polynomials (ϕL[1]
n (z1), ϕL[2]

n (z2))n∈N,
and (ϕR[1]

n (z1), ϕR[2]
n (z2))n∈N defined as follows

ϕR[1]
n (z1) := χR[1]

n (z1), ϕR[2]
n (z2) := χR[2]

n (z2)(DR
n )−1,

ϕL[1]
n (z1) := (DL

n )−1χL[1]
n (z1), ϕL[2]

n (z2) := χL[2]
n (z2).

are said to be the CMV bases. Notice that the above sequences are bi-orthonormal.

Definition 6. In the same way as for orthogonal matrix polynomials, given the bi-
orthogonal sequences (χL[1]

n (z1), χL[2]
n (z2))n∈N, (χR[1]

n (z1), χR[2]
n (z2))n∈N, we define the

Kernel Laurent polynomials

KR
n (z1, z2) :=

n∑
j=0

χR[2]
j (z2)(DR

j )−1(χR[1]
j (z1))† =

n∑
j=0

ϕR[2]
j (z2)(ϕR[1]

j (z1))†,

KL
n (z1, z2) :=

n∑
j=0

(χL[2]
j (z2))†(DL

j )
−1χL[1]

j (z1) =

n∑
j=0

(ϕL[2]
j (z2))†ϕL[1]

j (z1).

Proposition 6. The Kernel Laurent polynomials satisfy a reproducing property,
i.e. for every matrix Laurent polynomial

Q(z) ∈ Span{z−kIp · · · ztIp} with

t = k, if n = 2k,
t = k + 1, if n = 2k + 1,

(12)

we have 〈
(KR

n (z1, y))†,Q(z2)
〉

R
= Q(y),

〈
Q(z1),KR

n (y, z2)
〉

R
= Q(y)†,〈

KL
n (z1, z),Q(z2)

〉
L

= Q(z)†,
〈
Q(z1), (KL

n (z, z2))†
〉

L
= Q(z).

Proof. Let Q(z) be a matrix Laurent polynomial as in (12), then there exist n + 1
matrix coefficients (αl)n

l=0 (some can be the null matrix) such that

Q(z) =

n∑
l=0

ϕR[2]
l (z)αl.
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From here〈
(KR

n (z1, y))†,Q(z2)
〉

R
=

n∑
j=0

ϕR[2]
j (y)

∫
T×T

(ϕR[1]
j (z1))†dµ(z1, z2)

n∑
l=0

ϕR[2]
l (z2)αl

=

m∑
j=0

ϕR[2]
j (y)

∫
T×T

(ϕR[1]
j (z1))†dµ(z1, z2)ϕR[2]

j (z2)α j = Q(y).

The other identities follow in a similar way. �

4. Christoffel transformation
In this section we give the main result of the paper, the Christoffel formulas for
perturbations associated with the multiplication by a prepared Laurent polynomial.
This constitutes a matrix extension, as we did in [1, 2, 3] in the real case, for the
Laurent polynomial perturbations analyzed in the scalar case in [7].
Let L(z) be a matrix prepared Laurent polynomial of degree d (see Definition 1)

L(z) :=
d∑

j=−d

β jz j, β†j = β− j, j = 0, · · · , d.

For simplicity, we will assume that βd = Ip. Let W(z) := zdL(z). Notice that W(z) is
a monic polynomial in Cp×p[z] of degree N := 2d. As a consequence, W(z) has N p
zeros (counting multiplicities). If y1, . . . , yq are their zeros and α1, . . . , αq the corre-
sponding multiplicities, then

∑q
j=0 α j = N p. Notice also that from the definition of

W(z), det(W(0)) , 0.

Next, we will deal with a new matrix of measures

dµ̂(z1, z2) = L(z1)dµ(z1, z2),

as well as with the corresponding perturbed bilinear forms

〈 f (z1), g(z2)〉R̂ =

∫
T×T

f (z1)†L(z1)dµ(z1, z2)g(z2),

〈 f (z1), g(z2)〉L̂ =

∫
T×T

f (z1)L(z1)dµ(z1, z2)g(z2)†. (13)

Observe that for dµ̂(z1, z2), the property (7) is still preserved because (L(z))† = L(z)
on T. Let M̂R :=

〈
η(z1)>, η(z2)>

〉
R̂ and M̂L := 〈η(z1), η(z2)〉L̂ be the block semi-

infinite Gram matrices corresponding to 〈·, ·〉R̂ and 〈·, ·〉L̂ , respectively. Let us as-
sume that they have a Gauss-Borel factorization [6]

M̂R = Ŝ −1
1 D̂RŜ −1

2 , M̂L = Ẑ−1
1 D̂LẐ−1

2 ,

where Ŝ 1, Ẑ1 and Ŝ 2, Ẑ2 are lower and upper triangular block matrices, respectively,
with Ip in their main diagonal entries and D̂R, D̂L are non-singular diagonal block
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matrices. With this in mind, we can define the zig-zag basis (χ̂@[i]
n (z))n∈N, i = 1, 2,

@ = R, L, from the following block vectors

χ̂L[1](z) = Ẑ1η(z), χ̂L[2](z) = Ẑ†2η(z), (14)

χ̂R[1](z) = η(z)>Ŝ †1, χ̂R[2](z) = η(z)>Ŝ 2. (15)

A straightforward consequence of the above definition is

Corollary 2. The following relations hold

χ̂R[1](z) = χ̂R[2](z)Ŝ −1
2 Ŝ †1 = χR[1](z)S −†1 Ŝ †1 = χR[2](z)S −1

2 Ŝ †1,

χ̂L[1](z) = Ẑ1Ẑ−†2
χ̂L[2](z) = Ẑ1Z−1

1
χL[1](z) = Ẑ1Z−†2

χL[2](z).

Proposition 7. If L(z) =
∑d

j=−d β jz j is a matrix prepared Laurent polynomial, then

η(z)>
[
L(T †)

]†
= L(z)η(z)>,

L(T )η(z) = η(z)L(z), (16)

where the semi-infinite matrix T and the block vector η(z) were defined in (2) and
(8), respectively.

Proof. Using the fact that T> = T † and

(Ip, zIp, z−1Ip, z2Ip, z−2Ip · · · )T † = (zIp, z2Ip, Ip, z3Ip, z−1Ip · · · ) = zη(z)>,

(Ip, zIp, z−1Ip, z2Ip, z−2Ip · · · )T = (z−1Ip, Ip, z−2Ip, zIp, z3Ip · · · ) = z−1η(z)>,

we have that

η(z)>[L(T †)]† = η(z)>
 d∑

j=−d

β j(T †) j


†

= η(z)>
 d∑

j=−d

T jβ− j

 = η(z)>L(z).

Thus the result is proved. The equation (16) is obtained in a similar way. �

Proposition 8. The perturbed block moment matrices M̂R and M̂L satisfy

M̂R = L(T †)MR, M̂L = L(T )ML.

Proof. From (13) and Proposition 7 we get

M̂R =

∫
T×T

(
L(z1)η(z1)>

)†
dµ(z1, z2)η(z2)> = L(T †)MR,

M̂L = L(T )
∫
T×T

η(z1)dµ(z1, z2)η(z2)† = L(T )ML.

�

Proposition 9. Let us introduce the following semi-infinite block matrices

ω := (DR)−†S †2Ŝ −†2 (D̂R)†, ω̃ := D̂LẐ−1
2 Z2(DL)−1.

Then
L(z)χ̂R[1](z) = χR[1](z)ω, χ̂L[1](z)L(z) = ω̃χL[1](z). (17)

ω and ω̃ are called connection matrices.
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Proof. From Proposition 8 we have that M̂R = L(T †)MR. Thus

Ŝ −1
1 D̂RŜ −1

2 = L(T †)S −1
1 DRS −1

2 ,

Ŝ −†2 (D̂R)†Ŝ −†1 = S −†2 (DR)†S −†1 [L(T †)]†,

S †1(DR)−†S †2Ŝ −†2 (D̂R)† = [L(T †)]†Ŝ †1,

χR[1](z)(DR)−†S †2Ŝ −†2 (D̂R)† = L(z)χ̂R[1](z).

Notice that from Proposition 1, we have ensured the associativity of the product for
the above semi-infinite matrices (see also [14]), besides the matrix (DR)−†S †2Ŝ −†2 (D̂R)†

is a lower triangular block matrix. The other relation is obtained in a similar way. �

From (14), (15) and the definition of prepared polynomial of degree d, for @ = R, L,
we get

L(z)χ̂@[1]
n (z) ∈

Span{z−(k+d)Ip · · · zk+dIp} (coefficient of z−(k+d)IP = Ip), n = 2k,
Span{z−(k−d)Ip · · · zk+d+1Ip} (coefficient of zk+d+1Ip = Ip), n = 2k + 1.

With this in mind and Proposition 9

L(z)χ̂@[1]
n (z) ∈ Span{χ@[1]

0 (z) · · · χ@[1]
n+N }, (with coefficient of χ@[1]

n+N = Ip), N = 2d.
(18)

With this in mind, we have the following result

Proposition 10. The connection matrices ω and ω̃ have the following form

ω :=



ω0,0 0 0 · · · · · ·

ω0,1 ω1,1 0 · · · · · ·

...
... ω2,2 0 · · ·

ω0,N−1
...

...
. . .

. . .

Ip ω1,N
0 Ip
...

. . .
. . .

. . .


, ω̃ :=


ω̃0,0 ω̃0,1 ··· ω̃0,N−1 Ip 0 ···

0 ω̃1,1 ··· ω̃1,N−1 ω̃1,N Ip

. . .

. . . ω̃2,2 ··· ω̃2,N ω̃2,N+1 Ip

. . .

. . .
. . . ···

. . .
. . .

. . .

.

The above is equivalent to the following connection formulas

L(z)χ̂R[1]
n (z) = χR[1]

n+N(z) +

n+N−1∑
k=n

χR[1]
k (z)ωn,k, N = 2d, (19)

χ̂L[1]
n (z)L(z) = χL[1]

n+N(z) +

n+N−1∑
k=n

ω̃n,kχ
L[1]
k (z).

Proof. From Proposition 9 and (18) we know that

L(z)χ̂R[1]
n (z) = χR[1]

n+N(z) +

n+N−1∑
k=0

χR[1]
k (z)ωn,k,

and, since for 0 ≤ k ≤ n − 1,〈
L(z1)χ̂R[1]

n (z1), χR[1]
k (z2)

〉
R

=

〈
χ̂R[1]

n (z1), χR[1]
k (z2)

〉
R̂

= 0p×p,
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then ωn,k = 0p×p for k = 0, . . . , n − 1. The proof for ω̃ follows in a similar way. �

The following theorem gives formulas that relate the first families of bi-orthogonal
Laurent polynomials (χ@[1]

n (z1))n∈N and (χ̂@[1]
n (z1))n∈N, which are generated by the

bi-variate matrices of measures dµ(z1, z2), and L(z1)dµ(z1, z2), respectively.

Theorem 1. The sequences (χ@[1]
n (z))n∈N and (χ̂@[1]

n (z))n∈N, @ = L,R, are related
as follows (see Definition 3)

L(z)χ̂R[1]
n (z) = Θ∗


Jl

zdχR[1]
n (z)

· · · Jl
zdχR[1]

n+N−1(z)
Jl

zdχR[1]
n+N (z)

zdχR[1]
n (z) · · · zdχR[1]

n+N−1(z) zdχR[1]
n+N(z)

 , (20)

χ̂L[1]
n (z)L(z) = Θ∗



Jr
zdχL[1]

n (z)
...

Jr
zdχL[1]

n+N−1(z)

χL[1]
n (z)
...

χL[1]
n+N−1(z)

Jr
zdχL[1]

n+N (z)
χL[1]

n+N(z)


. (21)

Proof. We will prove (20). The proof of (21) is similar. Let W(z) := zdL(z). Then
W(z) is a monic matrix polynomial of degree N := 2d. Let y1, . . . , yq, be its zeros
and let α1, . . . , αq, be their corresponding multiplicities. Notice that

∑q
k=1 αk = N p.

From Proposition 10 we have

W(z)χ̂R[1]
n (z) = zdχR[1]

n+N(z) +

n+N−1∑
k=n

zdχR[1]
k (z)ωn,k.

Since χ̂R[1]
n (z) is a matrix Laurent polynomial, then it is an analytic function in C\{0}

and, in addition, 0 is not a zero of W(z). Let l(i)j (z), j = 1, . . . , si, be the left root vector

polynomials of degree κ(i)
j − 1 associated with the zero yi (see Definition 2). Then

from Proposition 4, for t = 0, · · · , κ(i)
j − 1, we have

0>p =
dt

dzt

(
l(i)j (z)W(z)χ̂R[1]

n (z)
)∣∣∣∣∣∣

z=yi

=
dt

dzt

(
l(i)j (z)zdχR[1]

n+N(z)
)∣∣∣∣∣∣

z=yi

+

n+N−1∑
k=n

dt

dzt

(
l(i)j (z)zdχR[1]

k (z)
)∣∣∣∣∣∣

z=yi

ωn,k.

Using Definition 3, we have the following relation between the spectral jets

−Jl,( j)
zdχR[1]

n+N (z)
(yi) =

(
Jl,( j)

zdχR[1]
n (z)

(yi) · · · Jl,( j)
zdχR[1]

n+N−1(z)
(yi)

) 
ωn,n
...

ωn,n+N−1

 .
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Proceeding in such a way for each zero yi, i = 1, · · · , q, we get

−


Jl

zdχR[1]
n+N (z)

(y1)
...

Jl
zdχR[1]

n+N

(yq)

 =


Jl

zdχR[1]
n (z)

(y1) · · · Jl
zdχR[1]

n+N−1(z)
(y1)

...
...

Jl
zdχR[1]

n (z)
(yq) · · · Jl

zdχR[1]
n+N−1(z)

(yq)


N p×N p


ωn,n
...

ωn,n+N−1


−Jl

zdχR[1]
n+N (z)

=

(
Jl

zdχR[1]
n (z)

· · · Jl
zdχR[1]

n+N−1(z)

)
N p×N p


ωn,n
...

ωn,n+N−1

 ,
and since

L(z)χ̂R[1]
n+N(z) = χR[1]

n+N(z) +
(
χR[1]

n (z) · · · χR[1]
n+N−1(z)

) 
ωn,n
...

ωn,n+N−1,

 ,
then the result follows. �

As in the above case, since (χ̂L[2]
n (z))n∈N and (χ̂R[2]

n (z))n∈N are bases of Lp×p[z], then
there exist matrix coefficients (bn,k)n

k=0 and (b̃n,k)n
k=0 such that

χR[2]
n (z) =

n∑
k=0

χ̂R[2]
k (z)bn,k, χR[2](z) = χ̂R[2](z)B,

χL[2]
n (z) =

n∑
k=0

b̃n,kχ̂
L[2]
k (z), χL[2](z) = B̃χ̂L[2](z),

where B is the connection matrix between (χR[2]
n (z))n∈N and (χ̂R[2]

n (z))n∈N and B̃ is the
connection matrix between (χL[2]

n (z))n∈N and ( χ̃L[2]
n (z))n∈N.

Proposition 11. Given the connection matrices ω and ω̃ (see (17)), the following
relations hold

B = Ŝ −1
2 S 2, B̃ = Z†2 Ẑ−†2 , (22)

ω = (DR)−†B†(D̂R)†, ω̃ = D̂LB̃†(DL)−1. (23)

Proof. To prove (22), let B′ be the upper triangular block matrix, with Ip in its main
diagonal, defined as B′ = Ŝ −1

2 S 2. Then

Ŝ 2B′ = S 2 −→ η>(z)Ŝ 2B′ = η>(z)S 2 −→ χ̂R[2](z)B′ = χR[2](z).

Since the representation in this basis is unique, we get B′ = B. For B̃ the result
follows in a similar way. (23) is a straightforward consequence of Proposition 9
and (22). �

Proposition 12. Let K̂@
n (z1, z2), @ = L,R, be the perturbed Laurent Kernel poly-

nomials associated with (χ̂@[1]
n (z1), χ̂@[2]

n (z2))n∈N. Then the perturbed and original
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Laurent kernel polynomials are related by the following connection formulas

KR
n (z1, z2) = K̂R

n (z1, z2)(L(z1))†

−
(
χ̂R[2]

n−N+1(z2)(D̂R
n−N+1)−1 · · · χ̂

R[2]
n (z2)(D̂R

n )−1
)
ω†[n,N]


(χR[1]

n+1 (z1))†
...

(χR[1]
n+N(z1))†

 , (24)

KL
n (z1, z2) = K̂L

n (z1, z2)L(z1)

−
(
(χ̂L[2]

n−N+1(z2))†(D̂L
n−N+1)−1 · · · (χ̂L[2]

n (z2))†(D̂L
n )−1

)
ω̃[n,N]


χ[1]L

n+1 (z1)
...

χ[1]L
n+N(z1)

 , (25)

where

ω[n,N] :=



Ip ωn−N+2,n+1 ··· ··· ωn,n+1

Ip

. . .
...

. . .
. . .

...
. . . ωn,n+N−1

Ip


, ω̃[n,N] :=


Ip

ω̃n−N+2,n+1 Ip

...
. . .

. . .
...

. . .
. . .

ω̃n,n+1 ··· ··· ω̃n,n+N−1 Ip

,
are truncations of the connection matrices ω and ω̃, respectively.

Proof. Given the connection matrix ω (see (17)), consider its block sub-matrix of
order n + 1

ω[n+1] =



ω0,0
...

. . .

ω0,N−1
. . .

Ip
. . .

. . .

. . .
. . .

. . .

Ip ωn−N+1,n · · · ωn,n


and define the following expression in two variables

L(z1, z2) :=
(
χ̂R[2]

0 (z2)(D̂R
0 )−1 · · · χ̂R[2]

n (z2)(D̂R
n )−1

)
ω†[n+1]


(χR[1]

0 (z1))†
...

(χR[1]
n (z1))†

 .
On one hand, using the fact that ω is a lower triangular block matrix and (23), we
have that ω†[n+1] = D̂R

[n+1]B[n+1](DR)−1
[n+1]. Thus(

χ̂R[2]
0 (z2)(D̂R

0 )−1 · · · χ̂R[2]
n (z2)(D̂R

n )−1
)
ω†[n+1] =

(
χ̂R[2]

0 (z2) · · · χ̂R[2]
n (z2)

)
B[n+1]DR

[n+1]

=
(
χR[2]

0 (z2)(DR
0 )−1 · · · χR[2]

n (z2)(DR
n )−1

)
,

and this implies thatL(z1, z2) = KR
n (z1, z2). On the other hand, notice that for n ≥ N,

the relation (19) yields
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(χ̂R[1]
n−N+m(z1))†(L(z1))† = (χR[1]

n+m(z1))† +

n+m−1∑
k=n−N+m

ω†n−N+m,k(χR[1]
k (z1))†, m = 1, · · · ,N.

This expression is equivalent to

(
ω†n−N+m,n−N+m · · · ω†n−N+m,n

) 
(χR[1]

n−N+m(z1))†
...

(χR[1]
n (z1))†

 =

(χ̂R[1]
n−N+m(z1))†(L(z1))† −

(
ω†n−N+m,n+1 · · · ω†n−N+m,n+m−1 Ip

) 
(χR[1]

n+1 (z1))†
...

(χR[1]
n+m(z1))†

 .
With this in mind

ω†[n+1]


(χR[1]

0 (z1))†
...

(χR[1]
n (z1))†

 =


(χ̂R[1]

0 (z1))†
...

(χ̂R[1]
n (z1))†

 (L(z1))† −
(
0(n−N)p×p

RN(z1)

)
,

where

RN(z1) = ω†[n,N]


(χR[1]

n+1 (z1))†
...

(χR[1]
n+N(z1))†

 .
Thus

L(z1, z2) = K̂R
n (z1, z2)(L(z1))† − ω†[n,N]


(χR[1]

n+1 (z1))†
...

(χR[1]
n+N(z1))†


and we get (24). To prove (25) we compute

(
(χ̂L[2]

0 (z2))†(D̂L
0 )−1 · · · (χ̂L[2]

n (z2))†(D̂L
n )−1

)
ω̃[n+1]


χ[1]L

0 (z1)
...

χ[1]L
n (z1)


in two different ways and we proceed as above. �

The following theorem gives formulas that relate the second families of bi-orthogonal
Laurent polynomials (χ@[2]

n (z2))n∈N and (χ̂@[2]
n (z2))n∈N, which are generated by the

bi-variate matrices of measures dµ(z1, z2), and L(z1)dµ(z1, z2), respectively.
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Theorem 2. The sequences (χ@[2]
n (z)) and (χ̂@[2]

n (z)), @ = L,R, are related as fo-
llows

(D̂R
n )−†(χ̂R[2]

n (z2))† = Θ∗

 Jl
zd

1
χR[2]

n+1 (z1)
· · · Jl

zd
1
χR[2]

n+N (z1)
Jl

zd
1(KR

n (z1,z2))†

0p×p · · · 0p×p Ip 0p×p

 ,

(χ̂L[2]
n (z2))†(D̂L

n )−1 = Θ∗



Jr
zd

1
χL[2]

n+1 (z1)
...

Jr
zd

1
χL[2]

n+N (z1)

0p×p
...

0p×p

Ip

Jr
zd

1K
L
n (z1,z2) 0p×p


.

Proof. From Proposition 12

zd
1(KR

n (z1, z2))† = W(z1)(K̃R
n (z1, z2))†

−
(
zd

1
χR[1]

n+1 (z1) · · · zd
1
χR[1]

n+N(z1)
)
ω[n,N]


(D̂R

n−N+1)−†(χ̂R[2]
n−N+1(z2))†
...

(D̂R
n )−†(χ̂R[2]

n (z2))†

 .
Taking into account that for a fixed z2 , 0, (K̃R

n (z1, z2))† is a matrix Laurent polyno-
mial in the variable z1, then it is analytic in C \ {0} and since 0 is not a zero of W(z1),
we get Jl,( j)

W(z1)(K̃R
n (z1,z2))†

(yi) = 0p, for 1 ≤ j ≤ si, i = 1, · · · , q, where the spectral jets

Jl,( j)
· (yi) act on the variable z1. From here

Jl,( j)
zd

1(KR
n (z1,z2))†

(yi) = −

(
Jl,( j)

zd
1
χR[1]

n+1 (z1)
(yi) · · · Jl,( j)

zd
1
χR[1]

n+N (z1)
(yi)

)
ω[n,N]


(D̂R

n−N+1)−†(χ̂R[2]
n−N+1(z2))†
...

(D̂R
n )−†(χ̂R[2]

n (z2))†

 .
Summarizing all these equations in a matrix form and taking into account that(

0 · · · 0 Ip

)
ω[n,N] =

(
0 · · · 0 Ip

)
,

the statement follows. �

Remark 3. If dv(z) is a univariate matrix of measures supported on T and we define
the following matrix of bi-variate measures

dµ(z1, z2) := dv(z1)δz1 (z2), supp µ(z1, z2) = T × T,

where δa(z) is de Dirac Delta function supported in z = a, then the sequences

(χR[1]
n (z1), χR[2]

n (z2))n∈N and (χL[1]
n (z1), χL[2]

n (z2))n∈N

are bi-orthogonal with respect to (5) and (6), respectively, if and only if

(χR[1]
n (z), χR[2]

n (z))n∈N and (χL[1]
n (z), χL[2]

n (z))n∈N

are bi-orthogonal with respect to

〈 f (z), g(z)〉r =

∫
T

f (z)†dv(z)g(z), and 〈 f (z), g(z)〉l =

∫
T

f (z)dv(z)g(z)†,
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respectively. Thus, the results obtained here can be also used for univariate matrix
of measures supported on T.

In the remainder of the paper we will analyze two examples. We consider a sequence
of monic Bernstein-Szegő polynomials {pn(z)}n≥0 (see [46]) defined by

pn(z) = zn −
zn−1

2
, n ≥ 1,

as well as the Laurent polynomials defined by x2k(z) = z−k(p2k(z))∗ (see (1)) and
x2k+1(z) = z−k p2k+1(z), or equivalently,

x2k(z) = z−k(1 − (1/2)z), x2k+1(z) = zk(z − 1/2) k = 0, 1, · · · . (26)

If we define χn(z) := xn(z)I2, then (χn(z))n∈N is the sequence of matrix orthogonal
Laurent polynomials with respect to the bilinear forms [46]

〈 f , g〉R =
1

2π

∫ 2π

0
f (z)†

dθ
|h(eiθ)|2

I2g(z), z = eiθ, where h(z) =
2z − 1
√

3
.

Let us define the bilinear form

〈 f , g〉R̂ =
1

2π

∫ 2π

0
f (z)†

L(z) dθ
|h(eiθ)|2

I2g(z), z = eiθ, (27)

where L(z) is a matrix prepared Laurent polynomial. We are going to represent the
sequences of bi-orthogonal with respect to (27), for two different Laurent polyno-
mials L(z).

Example 1 (Diagonal example). Let L(z) be the Laurent polynomial of "degree" 1

L(z) =

(
1 0
0 1

)
z−1 + 2

(
1 −i
i 1

)
+

(
1 0
0 1

)
z.

It is not difficult to check that L(z) = UL̃(z)U†, where

U =
1
√

2

(
i −i
1 1

)
, L̃(z) =

(
1/z + z 0

0 1/z + 4 + z

)
.

Let ((χ̂R[1]
n (z), χ̂R[2]

n (z))n∈N) be the sequences of matrix orthogonal Laurent polynomi-

als associated with L(z)
dθ

|h(eiθ)|2
. Taking into account this fact, we have that for every

n ∈ N, χ̂R[1]
n (z) = χ̂R[2]

n (z) := χ̂R
n (z) and they can be written as χ̂R

n (z) = U†X̂n(z)U,
where (X̂n(z))n∈N is the sequence of matrix orthogonal Laurent polynomials associ-

ated with L̃(z)
dθ

|h(eiθ)|2
. Using Theorem 1, we are going to find the representation for

(X̂n(z))n∈N.
Let W̃(z) be the matrix polynomial

W̃(z) := zL̃(z) =

(
1 + z2 0

0 1 + 4z + z2

)
.
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Observe that since det(W̃(z)) = (1 + z2)(1 + 4z + z2), then W̃(z) has four simple zeros
(yi)4

i=1. Moreover, the right (resp. left) eigenvectors will be any nonzero solution of
the equation W̃(yi)ri,0 = 0p (resp. li,0W̃(yi) = 0>p ).

Zeros Right eigenvector Left eigenvector
y1 = i r1,0 = (1, 0)> l1,0 = (1, 0)
y1 = −i r2,0 = (1, 0)> l2,0 = (1, 0)
y3 = −2 +

√
3 r3,0 = (0, 1)> l3,0 = (0, 1)

y4 = −2 −
√

3 r4,0 = (0, 1)> l4,0 = (0, 1)

.

Using Theorem 1, we deduce that the sequences of matrix orthogonal Laurent poly-
nomials (X̂n(z))n∈N are given by

L̃(z)X̂2k(z) =

Θ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

( 1
2 +i)i−k 0 (−1− i

2 )ik 0

( 1
2−i)(−i)−k 0 (−1+ i

2 )(−i)k 0

0 − 1
2

(√
3−4

)(√
3−2

)1−k
0

(√
3− 5

2

)(√
3−2

)k+1

0 1
2

(
4+
√

3
)(
−2−

√
3
)1−k

0
(
− 5

2−
√

3
)(
−2−

√
3
)k+1

(−1+ i
2 )i−k 0

(−1− i
2 )(−i)−k 0

0 1
2

(√
3−4

)(√
3−2

)−k

0 − 1
2

(
4+
√

3
)(
−2−

√
3
)−k

z−k+1(1 − (1/2)z)I2 zk+1(z − 1/2)I2 z−k(1 − (1/2)z)I2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

L̃(z)X̂2k+1(z) =

Θ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(−1− i
2 )ik 0 (1− i

2 )i−k 0

(−1+ i
2 )(−i)k 0 (1+ i

2 )(−i)−k 0

0
(√

3− 5
2

)(√
3−2

)k+1
0 − 1

2

(√
3−4

)(√
3−2

)−k

0
(
− 5

2−
√

3
)(
−2−

√
3
)k+1

0 1
2

(
4+
√

3
)(
−2−

√
3
)−k

(− 1
2 +i)ik 0

(− 1
2−i)(−i)k 0

0 −
(√

3− 5
2

)(√
3−2

)k+2

0
(

5
2 +
√

3
)(
−2−

√
3
)k+2

zk+1(z − 1/2)I2 z−k(1 − 1/2z)I2 zk+2(z − 1/2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Example 2 (Non-diagonal example). Let L(z) be a Laurent polynomial of "de-
gree" 2

L(z) =

(
1 0
0 1

)
z−2 −

√
2
(
0 0
1 0

)
z−1 −

√
2
(
0 1
0 0

)
z +

(
1 0
0 1

)
z2.

Here, L(z) can be written L(z) = U(z)L̃(z)U−1(z), where

U−1(z) =

(
z −z
1 1

)
, L̃(z) =


z2 −

√
2 +

1
z2 0

0 z2 +
√

2 +
1
z2

 ,
and U−1(z) = U†(z) on T. Observe that this is not a diagonal case, because the
matrix U(z) depends on the variable z.
Define the polynomial W(z) as follows

W(z) := z2L(z) =

(
1 0
0 1

)
−
√

2
(
0 0
1 0

)
z −
√

2
(
0 1
0 0

)
z3 +

(
1 0
0 1

)
z4.
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Since det(W(z)) = z8+1, then W(z) has eight simple zeros (yi)8
i=1.Moreover, the right

(resp. left) eigenvectors will be any nonzero solution of the equation W(yi)ri,0 = 0p

(resp. li,0W(yi) = 0>p ).

Zeros Right eigenvector Left eigenvector

y1 = i1/4 r1,0 = ((1 − i)i3/4,
√

2)> l1,0 = (−(1 + i)i5/4,
√

2)
y2 = −i1/4 r2,0 = (−(1 − i)i3/4,

√
2)> l2,0 = ((1 + i)i5/4,

√
2)

y3 = i3/4 r3,0 = (−(1 + i)i1/4,
√

2)> l3,0 = (i5/4, 1)
y4 = −i3/4 r4,0 = ((1 + i)i1/4,

√
2)> l4,0 = (−(1 − i)i7/4,

√
2)

y5 = i5/4 r5,0 = (−(1 + i)i3/4,
√

2)> l5,0 = (i3/4, 1)
y6 = −i5/4 r6,0 = ((1 + i)i3/4,

√
2)> l6,0 = (−i3/4, 1)

y7 = i7/4 r7,0 = (−(1 − i)i1/4,
√

2)> l7,0 = (−(1 − i)i3/4,
√

2)
y8 = −i7/4 r8,0 = ((1 − i)i1/4,

√
2)> l8,0 = ((1 − i)i3/4,

√
2)

.

Let ((χ̂R[1]
n (z), χ̂R[2]

n (z))n∈N) be the sequences of matrix orthogonal Laurent polyno-

mials associated with L(z)
dθ

|h(eiθ)|2
. Since L(z) is a Hermitian Laurent polynomial

matrix on T, then χ̂R[1]
n (z) = χ̂R[2]

n (z) := χ̂R
n (z). Using Theorem 1, we get

L(z)χ̂R
n (z) =

Θ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i1/2l1,0χn(i1/4) i1/2l1,0χn+1(i1/4) i1/2l1,0χn+2(i1/4) i1/2l1,0χn+3(i1/4)
i1/2l2,0χn(−i1/4) i1/2l2,0χn+1(−i1/4) i1/2l2,0χn+2(−i1/4) i1/2l2,0χn+3(−i1/4)
i3/2l3,0χn(i3/4) i3/2l3,0χn+1(i3/4) i3/2l3,0χn+2(i3/4) i3/2l3,0χn+3(i3/4)

i3/2l4,0χn(−i3/4) i3/2l4,0χn+1(−i3/4) i3/2l4,0χn+2(−i3/4) i3/2l4,0χn+3(−i3/4)
i5/2l5,0χn(i5/4) i5/2l5,0χn+1(i5/4) i5/2l5,0χn+2(i5/4) i5/2l5,0χn+3(i5/4)

i5/2l6,0χn(−i5/4) i5/2l6,0χn+1(−i5/4) i5/2l6,0χn+2(−i5/4) i5/2l6,0χn+3(−i5/4)
i7/2l7,0χn(i7/4) i7/2l7,0χn+1(i7/4) i7/2l7,0χn+2(i7/4) i7/2l7,0χn+3(i7/4)

i7/2l8,0χn(−i7/4) i7/2l8,0χn+1(−i7/4) i7/2l8,0χn+2(−i7/4) i7/2l8,0χn+3(−i7/4)

i1/2l1,0χn+4(i1/2)
i1/2l2,0χn+4(−i1/4)
i3/2l3,0χn+4(i3/4)

i3/2l4,0χn+4(−i3/4)
i5/2l5,0χn+4(i5/4)

i5/2l6,0χn+4(−i5/4)
i7/2l7,0χn+4(i7/4)

i7/2l8,0χn+4(−i7/4)
z2 xn(z)I2 z2 xn+1(z)I2 z2 xn+2(z)I2 z2 xn+3(z)I2 z2xn+4(z)I2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Using (26), each element of the above last quasi-determinant can be easily com-
puted.
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