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Abstract

A connection is established between the problem of characterizing all possible real spectra of entrywise
nonnegative matrices (the so-called real nonnegative inverse eigenvalue problem) and a combinatorial process
consisting in repeated application of three basic manipulations on sets of real numbers. Given realizable sets
(i.e., sets which are spectra of some nonnegative matrix), each of these three elementary transformations
constructs a new realizable set. This defines a special kind of realizability, called C-realizability and this
is closely related to the idea of compensation. After observing that the set of all C-realizable sets is a
strict subset of the set of realizable ones, we show that it strictly includes, in particular, all sets satisfying
several previously known sufficient realizability conditions in the literature. Furthermore, the proofs of these
conditions become much simpler when approached from this new point of view.
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1. Introduction

The nonnegative inverse eigenvalue problem is the problem of characterizing all possible
spectra � = {λ1, λ2, . . . , λn} of entrywise nonnegative matrices. If � is the spectrum of a non-
negative matrix, then � is said to be a realizable set. When all elements of � are real numbers,
the problem reduces to the real nonnegative inverse eigenvalue problem (henceforth abbreviated
as RNIEP). A complete solution of the RNIEP is known so far only for n � 4 (see §2.1 in [3]).
Many different points of view have been adopted to find sufficient conditions for the RNIEP (see
[3] and references therein for a comprehensive survey, or [9] for more recent approaches). Our
aim in this paper is to present a new, combinatorial approach to the RNIEP, which may help to
identify a subset of the set of realizable spectra, namely those described in short as realizable by
compensation. Our main tool is the following result, obtained by Guo in [4].

Theorem 1.1 [4]. Let � = {λ1, λ2, . . . , λn} ⊂ C be a realizable set, let λ1 be the Perron root and
let λ2 be real. Then for every ε > 0 the set � = {λ1 + ε, λ2 ± ε, λ3, . . . , λn} is also realizable.

When λ2 � 0, Theorem 1.1 amounts to a compensation: the negative eigenvalue λ2 can be
decreased as much as we want, provided the dominant eigenvalue λ1 is increased by the same
amount. In other words, the increase in negativity of λ2 is compensated by the increase of positivity
in λ1.4 Therefore, if λ2 � 0 we will say that � = {λ1 + ε, λ2 − ε, λ3, . . . , λn} is obtained from
� = {λ1, λ2, . . . , λn} by compensation (see [2] for more on the relationship between the idea
of compensation and the real nonnegative inverse eigenvalue problem). The goal of this paper
is to show that repeated application of this compensation procedure, combined with two other,
mostly trivial, manipulations on the spectrum leads to a special kind of realizability, which strictly
includes several previously known realizability criteria in the literature for the RNIEP, like those
by Suleimanova [10], Kellogg [5], Borobia [1] or Soto [8]. In particular, it includes every single
sufficient condition for realizability mentioned in Section 2.1 of the survey paper [3].

The two additional operations we need are given by the two following, trivial results:

Theorem 1.2. Let � = {λ1, λ2, . . . , λn} be a realizable set, let λ1 be the Perron root and let
ε > 0. Then � = {λ1 + ε, λ2, . . . , λn} is also realizable.

Theorem 1.3. Let �1 and �2 be realizable sets. Then the set � = �1 ∪ �2 is realizable.

Notice that in all three results (Theorems 1.1–1.3) we produce a new realizable set � starting
from realizable sets. This suggests the definition of a new class of realizable sets, namely those
which can be reached, starting from the trivially realizable zero set, by means of successively
applying either of the three theorems above. This new kind of realizability, which will be defined
in Section 2, is called C-realizability (the C standing for compensation). Its basic properties
are explored in Section 2, among them its connection with majorization (see Theorem 2.1). In
Section 3 we show that C-realizability is implied by all previous RNIEP realizability criteria in the
literature which somehow involve compensation. Moreover, the proofs of these criteria become
much simpler than the original ones via this new approach. Therefore, C-realizability can be
viewed as a unifying notion for all these sufficient conditions. Moreover, we show, by means of

4 Notice that the compensation only takes place if λ1 is the dominant eigenvalue.
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an example (see (9) below), that the set of all C-realizable sets is strictly larger than the reunion
of the sets satisfying these compensation realizability criteria.

2. C-realizability

Definition 2.1. A set � of n real numbers is said to be C-realizable if it can be reached starting
from the n realizable sets

{0}, {0}, . . . {0}
and successively applying, in any order and any number of times, either Theorem 1.1, Theorem
1.2 or Theorem 1.3.

Obviously, any C-realizable set is in particular realizable, since the zero sets are realizable
and all three Theorems 1.1–1.3 preserve realizability. However, as will be shown below (see (4)
or (5)), there are realizable sets which are not C-realizable. Furthermore, there are sets, like the
one in example (9) below, which are C-realizable but do not satisfy any of the previously known
realizability criteria connected with compensation. We illustrate Definition 2.1 with an example:
consider the set

� = {9, 6, 3, 3, −5, −5, −5, −5}. (1)

We will show that � is C-realizable, i.e., we will see that � can be obtained starting from the
eight realizable sets {0}, {0}, . . . , {0} and repeatedly applying one of the three results above. The
successive stages in this transformation may be described as follows:

Procedure:

0. {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}
1. {0, 0}, {0, 0}, {0, 0}, {0, 0}
2. {5, −5}, {3, −3}, {5, −5}, {3, −3}
3. {5, 3, −3, −5}, {5, 3, −3,−5}
4. {6, 3, −4, −5}, {7, 3, −5, −5}
5. {7, 6, 3, 3, , −4, −5, −5, −5}
6. {8, 6, 3, 3, −5, −5, −5, −5}
7. {9, 6, 3, 3, −5, −5, −5, −5}

Stage 1 is obtained applying Theorem 1.3 four times pairwise on the eight initial sets. Stage 2
amounts to applying Theorem 1.1 to the four subsets in stage 1, twice with ε = 5 and twice with
ε = 3. In stage 3 we just merge each two of the sets in stage 2 via Theorem 1.3, while stage 4
follows from applying Theorem 1.1 successively, first with ε = 1 on the outcome of the merging
and then with ε = 2. Finally, after merging the two remaining sets in stage 5, we apply Theorem
1.1 in stage 6, and Theorem 1.2 in stage 7 to obtain the required set �.

An elementary, but interesting, property of C-realizability is that it is preserved under so-called
negative subdivision:

Definition 2.2. The set {ρ1, . . . , ρi−1, γ, δ, ρi+1, . . . , ρn} is a negative subdivision of
{ρ1, . . . , ρn} if γ + δ = ρi with γ, δ, ρi < 0.
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Lemma 2.1. If � is C-realizable then so is any set obtained by successively applying any number
of negative subdivisions on �.

Proof. It suffices to prove the C-realizability of the set obtained from applying one single negative
subdivision on �. Let � = {α1, . . . , αp, γ1, . . . , γq} be C-realizable with αi � 0 > γj , and let �̃
be obtained from � by splitting γk into δ, η < 0 with δ + η = γk .

Since � is C-realizable, during the process of arriving to � from p + q sets {0}, . . . , {0},
one of the zeroes must be decreased via several compensations (i.e., via applying Theorem 1.1
several times) until it reaches the value γk . Suppose that in these compensations the corresponding
element takes the successive values

γ 0
k = 0 > γ 1

k > · · · > γ s−1
k > γ s

k = γk,

that is, γk is involved in the compensations

{. . . , 0, . . .} → {. . . , γ 1
k , . . .}

{. . . , γ 1
k , . . .} → {. . . , γ 2

k , . . .}
...

...
...

{. . . , γ s−1
k , . . .} → {. . . , γk, . . .},

and suppose that γ t
k � δ > γ t+1

k for some t ∈ {1, . . . , s − 1}. Then if we start with p + q + 1
sets {0}, . . . , {0} of zeroes and replace the compensations above with the compensations

{. . . , 0, 0, . . .} → {. . . , γ 1
k , 0, . . .}

{. . . , γ 1
k , 0, . . .} → {. . . , γ 2

k , 0, . . .}
...

...
...

{. . . , γ t−1
k , 0, . . .} → {. . . , γ t

k , 0, . . .}
{. . . , γ t

k , 0, . . .} → {. . . , δ, 0, . . .}
{. . . , δ, 0, . . .} → {. . . , δ, γ t+1

k − δ, . . .}
{. . . , δ, γ t+1

k − δ, . . .} → {. . . , δ, γ t+2
k − δ, . . .}

...
...

...

{. . . , δ, γ s−1
k − δ, . . .} → {. . . , δ, η, . . .},

in the end we reach the set �̃. Thus, the C-realizability of � implies the C-realizability of �̃. �

Another, less obvious, property of C-realizability is related with weak majorization: for any
x = (x1, . . . , xn) ∈ Rn, let

x[1] � x[2] � . . . � x[n]
denote the components of x in decreasing order. Given x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn,
we say that x weakly majorizes y, or that y is weakly majorized by x, and denote it by xw � y if

k∑
i=1

x[i] �
k∑

i=1

y[i], k = 1, . . . , n. (2)
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We will show that the positive and the negative part of any C-realizable spectrum must satisfy
a weak majorization inequality.

Theorem 2.1. Let � = {α1, . . . , αp, −β1, . . . ,−βq} ⊂ R be a C-realizable set with αi > 0, i =
1, . . . , p and βj � 0, j = 1, . . . , q. Set α = (α1, . . . , αp) ∈ Rp and β = (β1, . . . , βq) ∈ Rq and
let α̃, β̃ ∈ Rs , s = max{p, q}, be the vectors obtained respectively from α, β by adjoining an
appropriate number of zeros to one of them. Then

α̃w � β̃. (3)

Proof. Starting with two sets with s zero elements each one, which trivially majorize each other,
α̃ and β̃ are obtained by successively applying either of Theorems 1.1, 1.2 or 1.3. Therefore,
it suffices to prove that applying each of the three theorems preserves the weak majorization
between the positive and the negative part of C-realizable sets.

Obviously, Theorem 1.2 preserves weak majorization: if the positive part of a set weakly
majorizes its negative part, the same will happen for the set obtained from the positive part by
strictly increasing the largest positive value. A similar argument can be employed for Theorem
1.1, where two eigenvalues change: the largest positive eigenvalue is again increased by ε, and
a second value is either increased or decreased by the same amount ε. The change in the largest
positive eigenvalue increases by ε every single partial sum of the positive values, and the change
in the second value can, at worst, compensate this increase. In any case, the gap between the
two sums in Eq. (2) is either maintained or widened. Finally, the fact that Theorem 1.3 preserves
weak majorization follows from a well known basic property of majorization (see [6, Proposition
A.7(ii), p. 121]). �

Notice that the converse of Theorem 2.1 is not true: although the set {5, 5; −3, −3, −3} satisfies
(3), it is not realizable, since it should be realized by a reducible matrix, and the set cannot be
partitioned into nonnegative realizable subsets. Hence, it is not C-realizable either. Moreover,
Theorem 2.1 cannot be extended to realizable sets, because, for instance,

{6, 1, 1, −4, −4} (4)

is realizable (see [7]), but α↓ = (6, 1, 1) does not majorize β↓ = (4, 4, 0). This example actually
shows, as announced, that the set of C-realizable sets is a strict subset of the set of realizable ones
(see the end of this section for another example).

The last result in this section gives necessary and sufficient conditions for C-realizability
whenever p = 2, i.e., for sets � with only two positive elements.

Theorem 2.2. Let � = {α1, α2, −β1, . . . ,−βq} with α1 � α2 > 0, βj � 0, j = 1, . . . , q and

α1 + α2 � β1 + · · · + βq.

Then the following statements are equivalent:

(i) � is C-realizable.
(ii) There exists a partition J ∪ K of {1, . . . , q} such that

α1 �
∑
j∈J

βj and α1 �
∑
K∈K

βk.
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(iii) There exist δ1, . . . , δq � 0 with
∑q

i=1 δ1 � α1 − α2 such that

�̃ = {α2, α2, −β1 + δ1, . . . ,−βq + δq}
is realizable.

Proof. (i) ⇒ (iii) Since � is C-realizable, there is a procedure to reach � starting from {0}, . . . , {0}
and successively applying Theorems 1.1–1.3 in some order. Note that once there are several
positive values in the same C-realizable set, the only positive value that can be modified is the
largest one. This means that at some point along the process we must reach two C-realizable sets

{α2, −β ′
1, . . . ,−β ′

r} and {α2, −β ′
r+1, . . . ,−β ′

r+s}.
At this point we slightly modify the original process: we apply Theorem 1.3 several times to

obtain

�′ = {α2, α2, −β ′
1, . . . ,−β ′

r+s , 0, . . . , 0},
and then continue with the original process (omitting the appropriate applications of Theorem
1.3). This new process leads to � just the same, since we always increase the dominant positive
value. Since � can be obtained from �′ via Theorems 1.1 and 1.2, we may take �̃ = �′.

(iii) ⇒ (ii) By the Perron–Frobenius Theorem applied to �̃, there exists a partition J ∪ K of
{1, . . . , q} such that

α2 �
∑
j∈J

(βj − δj ) and α2 �
∑
k∈K

(βk − δk).

Then we have

α1 = α2 + (α1 − α2) �
∑
j∈J

βj −
∑
j∈J

δj + (α1 − α2) �
∑
j∈J

βj

and

α1 = α2 + (α1 − α2) �
∑
k∈K

βk −
∑
k∈K

δk + (α1 − α2) �
∑
k∈K

βk.

(ii) ⇒ (i) With no loss of generality we assume
∑

j∈J βj �
∑

k∈K βk .
Suppose α2 �

∑
j∈J βj . Then

{α1} ∪ {−βk : k ∈ K} and {α2} ∪ {−βj : j ∈ J }
are both C-realizable sets and its union � is C-realizable.

Suppose α2 <
∑

j∈J βj . Let J = {j1, . . . , jr} and K = {k1, . . . , ks}. Then take any η1, . . . ,

ηr � 0 such that
∑r

i=1 ηi = α2 and ηi � βji
for i = 1, . . . , r . Then the sets

{α2, −η1, . . . ,−ηr} and

{
s∑

h=1

βkh
, −βk1 , . . . ,−βks

}

are both C-realizable. By Theorem 1.3,

�∗ =
{

s∑
i=1

βki
, α2, −η1, . . . ,−ηr, −βk1 , . . . ,−βks

}
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is also C-realizable. Now, since

α1 + α2 = α1 +
r∑

i=1

ηi � β1 + · · · + βq,

we have

α1 −
s∑

h=1

βkh
�

r∑
i=1

(βji
− ηi).

Thus, applying Theorem 1.1 and then Theorem 1.2 to �∗ we conclude that � is
C-realizable. �

We finish this section by pointing out that a set � of real numbers with exactly two positive
numbers may be realizable without satisfying condition (ii) in Theorem 2.2. One such example
is, for instance,

{97, 71, −44, −54, −70} (5)

(see [3]). This is another instance of a set which is realizable, but not C-realizable.

3. Compensation criteria and C-realizability

In this section we recall several previously known realizability criteria for the RNIEP, all of
them related to compensation, and prove that each of them implies C-realizability. We do this by
exhibiting in each case a procedure leading from the zero set to the desired one via Theorems
1.1–1.3. We begin with Kellogg’s realizability criterion.

Theorem 3.1 [5]. Let � = {α0, α1, . . . , αs, γ1, . . . , γt } ⊂ R with

α0 � α1 � · · · � αs > 0 � γt � · · · � γ1.

Define the set

K(�) = {k ∈ {1, . . . , min{s, t}} : αk + γk < 0}
and suppose that the following conditions are satisfied:

(i) α0 + ∑
i∈K(�),i<k(αi + γi) + γk � 0 for all k ∈ K(�),

(ii) α0 + ∑
i∈K(�)(αi + γi) + ∑t

j=s+1 γj � 0 if t > s.

Then � is realizable.

The following theorem shows that Kellogg’s conditions imply C-realizability.

Theorem 3.2. Let � be a set of real numbers. If � is realizable by Theorem 3.1 then � is
C-realizable.

Proof. Let

�̃ = {α0} ⋃
i∈K(�)

{αi, γi} if s � t,

�̃ = {α0} ⋃
i∈K(�)

{αi, γi} ⋃ {γs+1, . . . , γt } if s < t.



A. Borobia et al. / Linear Algebra and its Applications 428 (2008) 2574–2584 2581

Note that the set � − �̃ is composed of couples {αi, γi} with αi + γi � 0 and of the set
{αt+1, . . . , αs} if s > t . Each one of these sets is trivially C-realizable. Thus, the C-realizability
of �̃ implies the C-realizability of �. Notice also that conditions (i) and (ii) of Theorem 3.1 are
exactly the same for � and for �̃. Therefore we may assume that

� = {α0, α1, . . . , αs, γ1, . . . , γs+h}
for a certain h � 0 with αi + γi < 0 for each i = 1, . . . , s.

In order to prove that � is C-realizable we will use the following auxiliary sets: for k =
0, 1, . . . , s, define

Ak =
{

α0 +
k∑

i=1

(αi + γi), γs+1, . . . , γs+h

}
s⋃

j=k+1

{αj , γj }

and for k = 1, . . . , s define

Bk = Ak ∪ {αk, −αk}.
We will also use the inequality

α0 +
k∑

i=1

(αi + γi) = αk +
[
α0 +

k−1∑
i=1

(αi + γi) + γk

]
� αk, (6)

which is a consequence of condition (i) in Theorem 3.1.
We start with the C-realizable set {0, 0, . . . , 0} containing h + 1 zeroes. By applying Theorem

1.1 repeatedly it can be transformed into the C-realizable set⎧⎨⎩−
s+h∑

j=s+1

γj , γs+1, . . . , γs+h

⎫⎬⎭ .

Condition (ii) of Theorem 3.1 allows to apply Theorem 1.2 to this set in order to obtain the
C-realizable set As . Then, Bs is constructed via Theorem 1.3. Inequality (6) allows to apply
Theorem 1.2 to Bs in order to obtain the C-realizable set As−1. Then we apply repeatedly the
same argument: Theorem 1.3 allows to construct Bk from Ak , and inequality (6) allows to apply
Theorem 1.2 to Bk in order to obtain the C-realizable set Ak−1. In the last step, the C-realizable
set A0 = � is obtained. �

Once Theorem 3.2 has been proved, the analogous result for the realizability criterion obtained
by Borobia in [1] trivially follows from Lemma 2.1, since Borobia’s criterion is obtained from
Kellogg’s by negative subdivision:

Theorem 3.3. If � is realizable by Theorem 3.1 then any negative subdivision of � is C-realizable.

Another sufficient condition for realizability is the following one, obtained by Soto in [8].

Theorem 3.4 [8]. Let � = {α1, . . . , αs, γ1, . . . , γt } ⊂ R with

α1 � · · · � αs > 0 � γt � · · · � γ1.

Define the set

S(�) = {k ∈ {2, . . . , min{s, t}} : αk + γk < 0}
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and suppose that

(α1 + γ1) +
∑

i∈S(�)

(αi + γi) +
t∑

j=s+1

γj � 0 (7)

where
∑t

j=s+1 γj is understood to be 0 if s � t . Then � is realizable.

The following result shows that this realizability criterion also implies C-realizability.

Theorem 3.5. Let � be a set of real numbers. If � is realizable by Theorem 3.4 then � is C-
realizable.

Proof. Let

�̃ = {α1, γ1} ⋃
i∈S(�)

{αi, γi} if s � t,

�̃ = {α1, γ1} ⋃
i∈S(�)

{αi, γi} ⋃{γs+1, . . . , γt } if s < t.

Note that the set � − �̃ is composed of couples {αi, γi} with αi + γi � 0 and of the set
{αt+1, . . . , αs} if s > t . Each of these sets is trivially C-realizable. Thus, the C-realizability of �̃
implies the C-realizability of �. Notice also that condition (7) is exactly the same for � and for
�̃. Therefore we may assume that

� = {α1, . . . , αs, γ1, . . . , γs+h}
for a certain h � 0, and that αi + γi < 0 for each i = 2, . . . , s.

Consider the C-realizable set

{−γ1, γ1} ∪ {α2, −α2} ∪ · · · {αs, −αs} ∪ {0, . . . , 0}
with the last set containing h zeroes. Note that −γ1 � −γk > αk for each k = 2, . . . , s. Applying
several times Theorem 1.1 we obtain the C-realizable set{

−γ1 −
s∑

k=2

(αk + γk), γ1

}
∪ {α2, γ2} ∪ · · · {αs, γs} ∪ {0, . . . , 0}.

And applying again several times Theorem 1.1 we obtain the C-realizable set⎧⎨⎩−γ1 −
s∑

k=2

(αk + γk) −
s+h∑

j=s+1

γj , γ1

⎫⎬⎭ ∪ {α2, γ2} ∪ · · · {αs, γs} ∪ {γs+1, . . . , γs+h}.

Finally, inequality (7) allows to apply Theorem 1.2 to obtain the C-realizable set

{α1, γ1} ∪ {α2, γ2} ∪ · · · {αs, γs} ∪ {γs+1, . . . , γs+h}. �

We conclude with the following extension of Theorem 3.4.

Theorem 3.6 [8]. Let � = �0 ∪ �1 ∪ . . . ∪ �q ⊂ R such that, for i = 0, 1, . . . , q,

�i = {α(i)
1 , . . . , α(i)

si
, γ

(i)
1 , . . . , γ

(i)
ti

}
with α

(i)
1 � · · · � α

(i)
si > 0 � γ

(i)
ti

� · · · � γ
(i)
1 . For each i = 1, . . . , q let
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�̃i = {α(i)
1 + εi, α

(i)
2 , . . . , α(i)

si
, γ

(i)
1 , . . . , γ

(i)
ti

}
with εi > 0 and

�̃0 = {α(0)
1 − η0, α

(0)
2 , . . . , α(0)

s0
, γ

(0)
1 , . . . , γ

(0)
t0

}
with η0 > 0. If �̃0, �̃1, . . . , �̃q satisfy the conditions of Theorem 3.4 and

α
(0)
1 −

q∑
i=1

εi � max{α(1)
1 , . . . , α

(q)

1 , α
(0)
1 − η0}, (8)

then � is realizable.

Theorem 3.7. Let � be a set of real numbers. If � is realizable by Theorem 3.6 then � is C-
realizable.

Proof. The fact that each �̃i with i = 0, 1, . . . , q satisfies the conditions of Theorem 3.4 implies,
by Theorem 3.5, that each �̃i is C-realizable.

From inequality (8) it follows that
∑q

i=1 εi � η0. Hence, Theorem 1.2 applied to �̃0 implies
that

�∗
0 =

{
α

(0)
1 −

q∑
i=1

εi, α
(0)
2 , . . . , α(0)

s0
, γ

(0)
1 , . . . , γ

(0)
t0

}
is C-realizable. By Theorem 1.3 the set �∗

0 ∪ �̃1 ∪ · · · ∪ �̃q is C-realizable.

From inequality (8) it follows that α
(0)
1 − ∑q

i=1 εi � αk for each k = 1, . . . , q. Applying
Theorem 1.1 several times to �∗

0 ∪ �̃1 ∪ · · · ∪ �̃q we obtain that � is C-realizable. �

Before we conclude, we stress that the concept of C-realizability is more general than the
reunion of the compensation criteria analyzed in this section: consider, for instance, the set

� = {25, 21, 18, 16, −10, −10, −10, −10, −10, −10, −10, −10}, (9)

which satisfies neither the conditions of Theorem 3.1 nor the ones of Theorems 3.4 or 3.6.
However, one can easily check that � is C-realizable: starting from four zero sets of cardinal
three, repeated application of Theorem 1.1 leads to the four sets

{20, −10, −10}, {18, −10, −8}, {20, −10, −10}, {16, −10, −6}. (10)

The first two sets may be joined via Theorem 1.3, and applying Theorem 1.1 with ε = 1 to the
union leads to the set

�1 = {21, 18, −10, −10, −10, −9}.
Likewise, the two last sets in (10) can be merged and transformed into

�2 = {24, 16, −10, −10, −10, −10}.
Finally, merging �1 with �2 and applying Theorem 1.1, again with ε = 1, leads to the set �.

Therefore, � is C-realizable.
We finish by pointing out that based on Theorems 1.1–1.3, which have extremely simple state-

ments, we have easily proved in this section results whose original proofs were quite complicated.
This shows the power of the joint action of the three results in order to construct realizable sets.
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It would be of the utmost interest to translate the collective effect of these three theorems into
a checkable set of conditions for C-realizability. In view of example (9), such conditions would
be, strictly speaking, more general than the already known compensation criteria analyzed in this
section.
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